
Appendix 

     In this supplementary document to the article, detailed information about our the derivation of 

our equations of motion, methods for obtaining analytical results in the adiabatic limit, and a brief 

description of the movies are provided.  

 
A1. Theory 
     As shown in Figure 1 in the article, we consider a suspension of superparamagnetic beads 

exposed to a square array of ferromagnetic disks (with lattice period d) that are identical both in size 

and magnetization. In order to simplify the magnetic field calculation, we treat each disk as a pair of 

opposite magnetic point poles separated by the disk diameter, i.e., dM. The magnetic pole distribution of 

the micro-magnet array can be expressed by Eq. I, where λ0 is the effective magnetic pole density. The 

Fourier expansion of Eq. I will yield Eq. 1 in the article.0 
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     The magnetic scalar potential is governed by Laplacian equation and can be solved by separation 

of variables.0 Taking the negative gradient of the scalar potential and including the oscillating 
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, the expression of the total magnetic field as Eq. 2 is 

obtained.  

    The dimensionless variables 2 / , ,x y zdx       
 

 and ξM = 2πdM / d are adopted along with 

the short-hand notations: N=(n2 + m2)1/2, un(ξx)=cos(nξx)–cos(nξx–nξM) and vn(ξx)=sin(nξx)–sin(nξx–nξM). 

The magnetic force on the bead is approximated as the force on a point dipole m


 in a magnetic field 

gradient, M 0( ) totF m H 
 

, such that the magnetic force in 3-dimensional is obtained as Eq. II.  
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with the forcing magnitude 0 0 0 02F VH d    and using the magnetic susceptibility of the bead as 

3 / (3 )      which is consistent with a spherical, linearly magnetizable bead.0 The x component of 

the above equation yields Eq. 3. 

 

A2. Asymptotic Analysis 
     The equation of motion for the bead is obtained from the instantaneous balance between 

magnetic force and fluid drag.  We write this in dimensionless form as: 
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where 2x x d   and 2 2 2
0 0 0 016 9a H d      . As shown in the article, the adiabatic solution can 

be derived by considering the limit of extremely low driving frequencies, in which we can assume the 
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bead’s velocity approaches 0x  . This approach allows us to derive a direct analytical relationship 

for the bead as a function of time, which is given as: 
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When we consider the simplest possible periodically charged substrate with monochromatic, 

unidirectional periodicity (n=1 and m=0), and using phase φ0=π/2 and dM=d/2, we arrive at expression 

(7) in the article.   

 

A3. Brief Description of Supplementary Movies 
Eleven video clips are submitted with the article to demonstrate the numerical and experimental results.  

SI-1 provides an animation of the time modulated potential energy landscape superimposed on the 

calculated position of the superparamagnetic for the simulated conditions of ωx= π rad/s and Rf=7/5, 

corresponding to Figure 1b in the manuscript.   

SI-2 shows the open trajectories of the bead when Rf is 1/1. (Figure 3[A] in the manuscript) 

SI-3 shows the open trajectories of the bead when Rf is 3/1. (Figure 3[B] in the manuscript) 

SI-4 shows the open trajectories of the bead when Rf is 7/5. (Figure 3[E] in the manuscript) 

SI-5 shows the open trajectories of the bead when Rf is 9/5. (Figure 3[F] in the manuscript) 

SI-6 shows the open trajectories of the bead when Rf is 5/3. (Figure 3[C] in the manuscript) 

SI-7 shows the open trajectories of the bead when Rf is 7/3. (Figure 3[D] in the manuscript) 

SI-8 shows the closed trajectories of the bead when Rf is 49/50. (Figure 3[J] in the manuscript) 

SI-9 shows the closed trajectories of the bead when Rf is 2/1. (Figure 3[I] in the manuscript) 

SI-10 demonstrates multiplexed motion in which the small beads move but the big beads to not, which 

occurs at a phase of φ0=150o.  

SI-11 demonstrates multiplexed motion in which the big beads move but the small beads to not, which 

occurs at a phase of φ0=158o.  
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