Supplementary Information

The rupture of the thin liquid film between the droplets takes place at a point which lies on the line connecting the centers of masses of the two droplets. If the film is very thin but the droplets have not coalesced yet, the x_{c}-coordinate, which is the distance of the center of the thin film region from the wall, can approximately be calculated from: $x_{c} \approx x_{l}-r_{l} \cos \theta$ (see figure 7), with $h \ll x_{l}$. In doing so, we can evaluate the coalescence time t_{c} as a function of x_{c}. We calculate x_{c} from the last frame before coalescence takes place. $t_{c}\left(x_{c}\right)$ was calculated for all coalescing droplet pairs that were also used for the evaluation in section 3. The t_{c}, x_{c} pairs were sorted into 30 equal-sized bins of x_{c}, ranging from 0-500 $\mu \mathrm{m}$. The width of the collision channel is $500 \mu \mathrm{~m}$. The mean values $\left\langle t_{c}\right\rangle$ and $\left\langle x_{c}\right\rangle$ were calculated for each bin. To account for the effect of v_{0} on $t_{c},\left\langle t_{c}\right\rangle\left(\left\langle x_{c}\right\rangle\right)$ curves were evaluated for 5 bins of the initial approach velocity v_{0} with an average value $\left\langle v_{0}\right\rangle$ of each bin, which were the same $\left\langle v_{0}\right\rangle$ bins as in table 1 of section 3. Figure 1 displays the mean coalescence time $\left\langle t_{c}\right\rangle$ of each bin as a function of $\left\langle x_{c}\right\rangle$ for the five different $\left\langle v_{0}\right\rangle$ bins. Within the statistics of the experiment, no trend of $\left\langle t_{c}\right\rangle$ with changing $\left\langle x_{c}\right\rangle$ can be seen. From this we conclude that the presence of the channel walls in the x, y-plane has no measurable influence on the timescale of film drainage.

Figure 1: Mean coalescence time $\left\langle t_{c}\right\rangle$ as a function of the mean x-coordinate of the center of the thin liquid film $\left\langle x_{c}\right\rangle$ in the last recorded frame before coalescence took place. The different curves are for different values of the mean initial approach velocity $\left\langle v_{0}\right\rangle$.

