
## Supplement



**Supplementary Fig.1:** Schematic of the model. The osmotic process is modeled as  $d(\Delta c) / dt = k_{Os} \times \Delta c$ , the reaction or activity changing the solute concentration is modeled as a basic sigmoid function. The sigmoid function accounts for the plateau when reaching equilibrium and for increasing activity at the beginning, similar to the yeast growth curve observed in bulk.

## Supplementary Movie: Yeast-induced droplet shrinkage

A significant size change of droplets is induced by metabolic activity of encapsulated yeast cells. Total time of observation is 16h; scale bar shown on first frame,  $30 \mu m$ .

Keywords: Microdroplet, cell encapsulation, osmosis, droplet-based microfluidics, droplet shrinkage, droplet sensor, label-free