SUPPORTING INFORMATION

On chip Steady liquid-gas phase separation for flexible generation of dissolved gas concentration gradient

Bi-Yi Xu, Shan-Wen Hu, Xiao-Na Yan, Xing-Hua Xia, Jing-Juan Xu*, Hong-Yuan Chen

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. Email: <u>xujj@nju.edu.cn</u>,

No.	Liquid-gas	Gas dissolving	Gradient generation	Application	Ref.
	interface type	type and rate	& stability		
1	Gas bubbling	Air	Generate convective	Room NH ₃ monitoring	6
		Rate not mentioned	flux, no stable		
			gradient available		
2	PDMS membrane	Air	Not mentioned	Artificial lung	4
	(15 µ m thick)	50~200 ml/min/m ²			
3	PDMS membrane	0 ₂	Not mentioned	Photosensitized	7
	(50 µ m thick)	Rate not mentioned		organic oxygenation	
				reaction	
4	PDMS membrane	0 ₂	Oxygen gradient	Cell culture under	2
	(100 μ m thick)	<20s for O_2 to perfuse	generated	different O ₂	
		through the membrane		concentrations	
5	PDMS membrane	CO ₂	Not mentioned		8
	(~200 µ m thick)	Total acidification after			
		9.5 min			
6	3D	CO ₂	Observable gradient	Potential application	-
	interconnected	Total acidification		for cell culture	
	micro-porous	within 90s			
	PDMS				
	(~200 µ m thick)				
7	SMA array bridge	CO ₂	Stable gradient with	CaCO ₃ deposition	Present
		Total acidification	certain degree of	reaction	work
		within 90s	flexibility		

Table S1. Summary for characteristics of typical gas dissolving interface for microfluidic chips

Details for Physical modeling of DgCG

For DgCG modeling, Comsol multiphysics 3.5 is applied. The gradient system can be physically described by combining the steady state *incompressible Navier-Stocks equation*:

$$\rho((u \cdot \nabla)u) = -\nabla \cdot p + \eta(\nabla^2 u) \tag{1}$$

$$\nabla \cdot u = 0 \tag{2}$$

and the *convection and diffusion equation*:

 $D\nabla^2 c = u \cdot \nabla c \tag{3}$

 ρ , u , p and $\mathit{\eta}$ are the density, flow velocity field, pressure and the viscosity of the

liquid. D and c are diffusion coefficient and dissolved gas concentration. The two equations are coupled together by sharing the 2D flow velocity field ^u. The detailed parameters and settings for the models share the following values.

Boundary	Condition	Value
Inlet	Velocity	U ₀
Outlet	Pressure	0
Gas-liquid interface	No slip	-
Wall	No slip	-

Table S3. Convection and diffusion boundary condition for Model S1 and Model S2

Boundary	Condition	Value
Inlet	Concentration	0 mol/m ³
Outlet	Convective flux	-
Gas-liquid interface	Concentration	1 mol/m ³
Wall	Insulation	-

Table S4. Physical data for subdomain settings for Model S1 and Model S2

Physical quantity	Value			
Diffusion coefficient for CO ₂	1.77e-9m ² /s			
(isotropic) D				
Initial concentration for CO ₂ c_0	0 mol/m ³			
x-velocity	u (the x direction component of u)			
y-velocity	v (the y direction component of u)			
Liquid density ρ	1 kg/m ³			
Liquid Dynamic viscosity $~^\eta$	1 Pa*s			
Liquid Volume force	0 N/ m ³			

Table 55. Geometrical settings for Model S1				
Geometrical parameters	Value			
SMA single channel width	10, 20, 30, 40, 50 μm			
SMA interspaces	100, 150, 200, 300, 500 μm			
SMA inlet flow velocity	0.1, 0.2, 0.5, 1.0, 2.0 μL/min			

The two dimensional simulations are performed in a triangular grid consisting of 23430 cells for model 1 and 54769 cells for model 2. The densities of the triangular grid are chosen to best adapt the geometry of the models for high quality results.

Figure S1. Modelled results for concentration profiles along the centreline of the liquid channel with different geometries and distribution of the SMA. 1 to 5 corresponds to inlet velocity from 0.1, 0.2, 0.4, 0.8 to 1.6 μ L/min. A1-6. Homogenous SMA distribution. A1-3. the small channels are equally interspaced of 100 μ m, but of different channel width (10, 30, 50 μ m). A4-6. the small channels are of different interspaces (200, 300, 500 μ m) but same channel width of 30 μ m. B1-2. Arithmetric progression for SMA distribution. C1-2. Geometric

A: SMA with homogenous density; A1-3: SMA width varied, A4-6: SMA interspace varied

progression for SMA distribution. D. distribution of the diffusion gradient

Figure S2. The CO₂ concentration distribution in model S2. A. the CO₂ concentration distribution under inlet flow velocity of 1.0 μ L/min, B. the dissolved CO₂ concentration in the 8 channels under inlet flow velocity of 0.2, 1.0, 4.0 μ L/min. The local concentration is normalized based on the scale that the saturation concentration is 1.

Figure S3. Birds view for the generated CaCO₃ in the channel near the liquid-gas interface in the major channel (region of dotted red frame in figure 4B). The top of the image is near the liquid-gas interface.

Transforming the color information to CO₂ content

To transform the color information to the related content of the dissolved carbon dioxide, we did the following experiment.

First, the colors of solutions under different pH are recorded in standard condition.

Second, to link the pH to the carbon dioxide concentration, calculations are carried out to estimate the amount of carbon dioxide needed to transform the bromythel blue solution (containing 10 mM NaOH) to a certain pH. The calculations are based on the principle for acid-base equilibrium.

 $H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$ (1), with K_{al} , suppose x molar H^+ has been generated.

 $HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$ (2), with K_{a2} suppose y molar H^+ has been generated.

 $H_2 O \rightleftharpoons H^+ + O H^-$ (3), with K_w suppose z molar H^+ has been generated.

	H_2CO_3	HCO_3^-	CO_{3}^{2-}	OH^-	H^{+}
Start	а	b	С	d	0
Equilibrium	a-x	b+x-y	c+y	d+z	x+y+z

Based on the above relationship, it can be deduced:

Where $K_{a1} = 4.3 \times 10^{-7}$, $K_{a2} = 5.6 \times 10^{-11}$, $K_w = 10^{-14}$

The equations are solved for the content of H^+ , using following values corresponding to a, b, c and d as is shown in the following table. The content of H^+ is then transformed to pH. To solve the equations, the software Mathematica 5 is applied. Curve fittings are applied for the relationship between the CO₂%~pH with the help of Matlab 7.0 curve fitting tools. The original solution is pH=12, and the CO₂ saturated solution is pH=6.1.

Table S6. Relationship between pH and the content of carbon dioxide.

NaOH (d)	Na₂CO₃ (c)	NaHCO₃ (b)	H₂CO₃ (a)	CO ₂ content (Mol)	pH (calculated)	CO₂ content %
0.01				0	12.0000	0
0.008	0.001			0.001	11.9043	3.624633
0.006	0.002			0.002	11.7823	7.249266
0.004	0.003			0.003	11.6154	10.8739
0.002	0.004			0.004	11.3597	14.49853
0	0.005	0		0.005	10.9344	18.12317
	0.004	0.002		0.006	10.4616	21.7478
	0.003	0.004		0.007	10.0954	25.37243
	0.002	0.006		0.008	9.75881	28.99706
	0.001	0.008		0.009	9.34252	32.6217
	0.0005	0.009		0.0095	9.00695	34.43401
	0.0002	0.0096		0.0098	8.66063	35.5214
	0	0.01	0	0.01	8.30525	36.24633

0.01	0.0001	0.0101	8.11961	36.60879
0.01	0.0002	0.0102	7.96134	36.97126
0.01	0.0005	0.0105	7.64423	38.05865
0.01	0.001	0.011	7.35981	39.87096
0.01	0.002	0.012	7.06353	43.4956
0.01	0.005	0.015	6.66713	54.3695
0.01	0.01	0.02	6.36640	72.49266
0.01	0.015	0.025	6.19030	90.61583
0.01	0.02	0.03	6.06549	>100

Last, the location with the same color as the recorded with known pH are transformed to the content of CO_2 as are imaged in Fig. 4 A3 in the text.