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C.	Determination	of	the	transient	response	
 
We	 obtained	 the	 expression	 for	 the	 transient	 response	 of	 the	 current,	 equation	 (3),	 as	 a	
purely	phenomenological	fit	to	the	numerically	determined	diffusion	of	molecules	into	the	
channel.	

The	one‐dimensional	diffusion	equation,		

															
߲ܿሺݔ, ሻݐ
ݐ߲

ൌ ܦ
߲ଶܿሺݔ, ሻݐ
ଶݔ߲

,	

was	solved	numerically	along	the	length	L	of	a	nanochannel	using	the	following	initial	and	
boundary	conditions:		
–	 Initially,	 no	 redox	 active	 molecules	 are	 present	 in	 the	 channel.	 Hence,	 the	 starting	
condition	for	t	=	0	is	

c(x,	0)	=	0	for	0	<	x	<	L.	

–	The	bulk	concentration	at	the	edge	of	the	nanochannel	that	is	connected	to	the	reservoir	is	
kept	constant	at	cb	for	all	times	t:	

c(x	=	0,	t)	=	c(x	=	L,	t)	=	cb.	

–	 For	 t	 >	 0,	 molecules	 start	 to	 diffuse	 into	 the	 nanochannel	 from	 both	 ends	 until	 the	
concentration	equilibrates	to	c(x,	t)	=	cb	at	time		t	→	∞.		

The	 total	number	of	molecules	present	 in	 the	 channel	was	determined	by	 integrating	 the	
numerical	solution	c(x,	t)	along	the	channel	length	for	all	time	steps	t:	

	 ܰሺݐሻ ൌ ׬ ܿሺݔ, ݔሻdݐ
௅
଴ 	

This	numerical	solution	N(t)	was	phenomenologically	fitted	to	the	analytical	expression	

		 ܰሺݐሻ ൌ ܿ௕	ܮ	erf ൬2.97	 ቀ
஽	௧

௅మ
ቁ
଴.଺
൰,	

which	does	not	deviate	more	than	3%	from	the	numerical	solution	for	all	time	t	(Figure	S3).			

If	molecules	are	 initially	present	 in	 the	nanochannel,	 i.e.	N(t	=	0)	≠	cb	L,	the	expression	for	
N(t)	is	modified	to		

	 ܰሺݐሻ ൌ ܰሺ0ሻ ൅ ൫ܿ௕ܮ െ ܰሺ0ሻ൯	erf ൬2.97	 ቀ
஽	௧

௅మ
ቁ
଴.଺
൰.	

Since	the	faradaic	current	is	proportional	to	the	concentration	of	molecules	in	the	channel,	
the	current	i(t)	can	be	be	expressed	as	

	

Electronic Supplementary Material (ESI) for Lab on a Chip
This journal is © The Royal Society of Chemistry 2012



 

								
Fig.	
expr
for	b

	

whe

For	
nano

	

	

and	

	

	

The	

		

and	

	

Corr

	

	
	
	

																				
S4	 Comparis
ression	(dashe
both	curves.	In

݅ሺݐሻ ൌ ݅ሺ

ere	i(0)	is	the

the	 case	 o
ochannel	fro

c(x,	0)	=	

c(x,	0)	=	

the	boundar

c(x=0,	t)
డ௖ሺ௫ୀ௅,௧ሻ

డ௫

numerical	s

ܰሺݐሻ ൌ ܿ

the	solution

ܰሺݐሻ ൌ ܰ

respondingly

݅ሺݐሻ ൌ ݅ሺ

son	 of	 the	 no
ed	red	line)	f
nset:	Differen

ሺ0ሻ ൅ ൫݅ss െ

e	current	at	

of	 a	 device	
om	one	end.	

0	for	x	>	0,	

cr	for	x	≤	0,	

ry	condition

	=	cb,	

ൌ 0.	 	

solution	of	th

ܿb	ܮ	erf ൬2.97

n	for	the	diff

ܰሺ0ሻ ൅ ሺܿbܮ

y,	the	curren

ሺ0ሻ ൅ ൫݅ss െ

ormalized	 nu
for	a	10	µm	lo
nce	of	the	num

݅ሺ0ሻ൯	erf ൬2.

t	=	0	and	iss

with	 one	
This	corres

ns	

he	diffusion	

7 ൈ 0.60 ቀ
	஽

௅మ

fusion	with	N

ܮ െ ܰሺ0ሻሻ	erf

nt	is	equal	to

݅ሺ0ሻ൯	erf ൬2.

	

5 

umerical	 solu
ong	device	wi
merical	soluti

.97	 ቀ
஽	௧

௅మ
ቁ
଴.଺
൰

is	the	steady

access	 hole
ponds	to	sta

equation	un

௧
మ ቁ

଴.଺
൰,	

N(0)	molecu

f ൬2.97 ൈ 0.6

o	

.97 ൈ 0.60 ቀ

ution	 for	N(t)
ith	two	acces
on	and	analyt

൰,	

y‐state	curre

e,	 molecule
arting	condit

nder	these	co

ules	present	

60	 ቀ
஽	௧

௅మ
ቁ
଴.଺
൰.

	

஽	௧

௅మ
ቁ
଴.଺
൰.	

)	 (green	 line)
s	holes	using
tical	expressi

ent.	

es	 can	 only
tions		

onditions	is	

in	the	chann

		

	
)	 and	 the	 an
g	Deff	=	8	x	10‐7
ion.		

y	 diffuse	 int

well	describ

nel	at	t	=	0	is

	

alytical	
7	cm2/s	

to	 the	

bed	by	

s		

Electronic Supplementary Material (ESI) for Lab on a Chip
This journal is © The Royal Society of Chemistry 2012



 

D.	M
	
	

Fig.	S
solut
Figur
elect
	
Occa
exhi
Whe
elect
retu
dow

Multi‐potent

S5	Multi‐pote
tion	of	1.5	mM
re	 2	 and	 3.	
trode.	(b)	Cor

asionally	 it	
ibited	 oppos
en	 the	 poten
trode	was	m
urned	to	the	
wnwards,	the

tial‐step	ch

	
ential‐step	 ch
M	Fc(MOH)2	a
(a)	 Potential
rresponding	c

was	 observ
site	 tendenc
ntial	 of	 the	
maintained	a
steady‐state
en	increased

ronoamper

hronoampero
and	1	M	KCl	a
s	 applied	 as	
current‐time	r

ved	 that	 a	 d
cies	 to	 thos
oxidizing	 el
at	0	V,	the	cu
e	value;	the	
d	again	durin

6 

rometry	exh

ometry	 of	 a	 d
as	supporting
a	 function	 o
response.		

device	 whos
e	 shown	 in
lectrode	wa
urrent	jumpe
current	fell	
ng	the	transi

hibiting	opp

device	 of	 typ
g	electrolyte	e
of	 time	 to	 th

e	 Cr	 sacrifi
Figure	 2	 an

as	 stepped	 u
ed	to	a	value
below	iss	wh
ient.		

posite	tend

	

pe	 L50H1	 fille
exhibiting	ten
he	 top	 (black)

cial	 layer	 w
nd	 3,	 as	 sho
up	while	 tha
e	higher	tha
hen	the	pote

dencies	

ed	with	 an	 a
ndencies	oppo
)	 and	 bottom

was	 freshly	 e
own	 in	 Figu
at	 of	 the	 red
an	iss	and	gra
ential	was	st

queous	
osite	to	
m	 (red)	

etched	
ure	 S4.	
ducing	
adually	
tepped	

Electronic Supplementary Material (ESI) for Lab on a Chip
This journal is © The Royal Society of Chemistry 2012


