Electronic Supplementary Information

1. Microfluidic chips

The six microfluidic chips used in the experiments are shown schematically in Fig. S1. The height of the microchannels is uniformly 100 μ m. Details of each chip are listed in Table S1 and S2.

Figure S1. Schematic illustrations of the six microfluidic chips used.

	Chip size	Size of input	Number of	Number of	Type of	Number of final	Related figures
	(mm^2)	holes (µm)	input holes	infused fluids	emulsions	droplet generators	in the text
1	15 imes 15	250	108	2	single	144	Fig. 1, 5
2	15 imes 15	500	50	3	Janus	40	Fig. 7
3	30×30	500	144	3	Janus	72	Figs.1, 6
4	21×21	500	100	3	double	40	Fig. 8
5	21×21	500	112	4	triple	32	Figs. 1,9
6	45 imes 45	500	320	3	double	128	Fig. 8

Table S1. Detailed information on the microfluidic chips.

Table S2. Widths of microchannels around junctions.

#	Innermost	junctions	Middle ju	inctions	Outermost junctions	
#	Output (µm)	Input (µm)	Output (µm)	Input (µm)	Output (µm)	Input (µm)
1	100	100	-	-	-	-
2	100	100	-	-	-	-
3	200	100	-	-	-	-
4	200	100	100	50	-	-
5	200	100	100	50	50	50
6	200	100	100	50	-	-

2. Supporting modules with annular channels

Details of supporting modules with annular channels are listed in Table S3.

#	Chip Modul # (mi	Module size	Number	1 st annulus (outer)		2 nd annulus		3 rd annulus		4 th annulus (inner)	
		(mm ³)	of annulus	i.d. (mm)	o.d. (mm)	i.d. (mm)	o.d. (mm)	i.d. (mm)	o.d. (mm)	i.d. (mm)	o.d. (mm)
1	1	$36 \times 36 \times 24$	2	13	14	10	11	-	-	-	-
2	2	$36 \times 36 \times 32$	3	11.5	12.5	8.5	9.5	5.5	6.5	-	-
3	3	$48 \times 48 \times 32$	3	26.5	27.5	23.5	24.5	20.5	21.5	-	-
4	4	$40 \times 40 \times 32$	3	175	10 5	145	155	11.5	10.5	-	-
5	5	$40 \times 40 \times 40$	4	17.5	18.5	14.5	15.5	11.5	12.5	8.5	9.5
6	6	$64 \times 64 \times 32$	3	41.5	42.5	38.5	39.5	35.5	36.5	-	-

 Table S3. Supporting modules with annular channels

3. Production rates

Table S4 lists the production rates demonstrated in this study. These flow rates were not the maximized flow rates in the microfluidic modules we used.

Chip#	Type of emulsions	Number of final droplet generators	Production rate	Related figures in the text
1	single	144	180 mL h ⁻¹	Fig. 1, 5
2	Janus (immiscible)	40	20 mL h ⁻¹ (10+10)	Fig. 7
3	Janus (miscible)	72	72 mL h^{-1} (36+36)	Fig. 6
4	dau bla	40	25 mL h^{-1} (5+20, two-step)	Figs. 8b-g
4	double	40	20 mL h ⁻¹ (10+10, one-step)	Fig. 8h
5	triple	32	31 mL h^{-1} (5+6+20, three-step)	Fig. 9
6	double	128	75 mLh ⁻¹ (15+60, two-step)	Fig. 8i

Table S4. Production rates demonstrated in this study.

Supplemental Movie Captions:

1_cross144.mpg: Movie clip of the formation of O/W emulsion droplets in the module having 144 cross-flowing MFDGs, recorded at 6000 fps. Disperse phase flow rate (Q_d) was 180.0 mL h⁻¹ and continuous phase flow rate (Q_c) was 270.0 mL h⁻¹.

2_sheath72-Janus.mpg: Movie clip of the formation of Janus droplets of two miscible segments in the module having 72 ψ -shaped MFDGs, recorded at 4000 fps. Flow rates were $Q_d = 72.0 \text{ mL h}^{-1}(36.0 \text{ mL h}^{-1} \times 2)$ and $Q_c = 576 \text{ mL h}^{-1}$.

3_cross40-Janus.mpg: Movie clip of the formation of Janus droplets in the module having 40 cross-flowing MFDGs, recorded at 3000 fps. Flow rates were $Q_d = 20.0 \text{ mL h}^{-1}(10.0 \text{ mL h}^{-1} \times 2)$ and $Q_c = 40.0 \text{ mL h}^{-1}$.

4_40-double-twostep-single.mpg: Movie clip of the two-step formation of single core O/O/W double emulsion droplets in the module having 40 sets of two-consecutive cross-shaped MFDGs, recorded at 3000 fps. Flow rates were $Q_d = 25.0 \text{ mL h}^{-1}$ (core 5.0 mL h⁻¹ + shell 20.0 mL h⁻¹) and $Q_c = 500.0 \text{ mL h}^{-1}$.

5_40-double-twostep-dual.mpg: Movie clip of the two-step formation of dual core O/O/W double emulsion droplets in the module having 40 sets of two-consecutive cross-shaped MFDGs, recorded at 3000 fps. Flow rates were $Q_d = 25.0 \text{ mL h}^{-1}$ (core 5.0 mL h⁻¹ + shell 20.0 mL h⁻¹) and $Q_c = 250.0 \text{ mL h}^{-1}$.

6_40-double-onestep.mpg: Movie clip of the one-step formation of single core O/O/W double emulsion droplets in the module having 40 sets of two-consecutive cross-shaped MFDGs, recorded at 1000 fps. Flow rates were $Q_d = 20.0 \text{ mL h}^{-1}$ (core 10.0 mL h⁻¹ + shell 10.0 mL h⁻¹) and $Q_c = 150.0 \text{ mL h}^{-1}$.

7_128-double-twostep.mpg: Movie clip of the two-step formation of O/O/W double emulsion droplets in the module having 128 sets of two-consecutive cross-shaped MFDGs, recorded at 2000 fps. Flow rates were $Q_d = 75.0 \text{ mL h}^{-1}(\text{core } 15.0 \text{ mL h}^{-1} + \text{shell } 60.0 \text{ mL h}^{-1})$ and $Q_c = 600.0 \text{ mL h}^{-1}$.

All movies are prepared in MPEG-1 format.