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Supplementary Figure 1 CMOS frequency-shift magnetic sensor
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(a) Demonstration of the resonance frequency-shift induced by the magnetic particles. The blue spiral coil
represents the sensing inductor, and the brown spheres stand for the magnetic particles. (b) and (¢) SEM images

s of one sensing site with magnetic particles. The outer diameter of the sensor inductor is 120 um. The grey
spheres are magnetic particles with the particle size of 1um (Invitrogen Dynabeads® MyOne™).
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Supplementary Figure 2 Preparation of mouse embryonic stem cells (ESCs)
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(a) The mouse ESCs were first grown in media with leukemia inhibitory factor (LIF) to maintain their un-
differentiated state. (b) We then pre-differentiated the ECS to embryoid bodies (EBs) using the hanging drop

s technique for 48 hours. (c) The EBs were then seeded onto the sensor surface and grown for additional 10 days
in a medium lacking LIF. We achieved reliable cell adhesion to the sensor by coating the CMOS magnetic

sensor surface (silicon nitride) with fibronectin ligand.
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Supplementary Figure 3 Oscillator line-width narrowing effect
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Active oscillator provides an ultrasensitive measurement method to detect the resonance frequency shift in an
LC tank due to its line-width compression effect. (a) The impedance function of a lossy parallel LC resonant
s tank. The widespread impedance function around the resonance frequency results in a poor relative frequency-
shift resolution. (b) The equivalent circuit of the parallel LC tank. (c) The phase noise profile of an LC oscillator
using the same lossy LC tank as its resonance tank. Compared to the impedance function, the oscillator phase
noise profile presents a significant line-width compression effect, which leads to an ultrasensitive frequency-

shift resolution®® ?’. (d) The simplified equivalent circuit of the oscillator with the oscillator active core high-
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Supplementary Figure 4 Correlated double counting (CDC) frequency detection for sensor noise
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Correlated double counting (CDC) frequency detection further improves the sensitivity of the oscillator-based

s resonance frequency-shift detection?’. (a) Basic differential frequency-shift detection. Two sensing oscillators,
each with its own LC resonance tank, share the same supply and biasing and are physically adjacent to each
other. One sensing oscillator is used as the active sensor and the other as the reference. Thus, environmental
noise, e.g. supply noise or temperature variation, is correlated between the two sensors and is suppressed
through time-interleaved differential frequency detection by taking the difference of the two sensors’ frequency

1 readouts. However, the noise from the oscillator active-core, often as the dominant noise, is uncorrelated and
cannot be reduced in the basic differential detection. (b) Correlated double counting (CDC) technique is
implemented as two sensing LC tanks (one for actual sensing and the other for reference) sharing the same
oscillator active-core. Switching circuits selectively connect one of the sensing tanks to the oscillator active-
core. With this CDC technique, the noise from both the environmental perturbations and the oscillator active-

1s core is correlated between the sensing and the reference readouts, and thus is readily to be suppressed through
differential operation. For the CMOS magnetic sensor in this work, the CDC scheme is extended to a quad-core
configuration with four sensor sites sharing the same oscillator active-core.
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Supplementary Figure 5 Sensor noise cancellation measurement
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Noise suppression of the CMOS frequency-shift magnetic sensor is demonstrated in a real-time measurement. In
both plots, the blue and red curves represent the sensor outputs, as the resonant frequencies, of the active sensor
s (fsense) @nd the reference sensor (f.s), respectively. The black curves show the sensor outputs as the difference
between fns and fies for the basic differential scheme and the CDC scheme (Supplementary Fig. 4). (a) Sensor
measurement for the basic differential scheme. There is a slowly-varying common frequency drift for fens and
fer, Which is due to the noise from environmental perturbations and significantly degrades the frequency
detection capability. With the differential scheme, the common drift is largely removed, which yields a noise
o floor of 102.1 Hz, i.e. 101.1 ppb (parts-per-billion) at a 1.01 GHz center frequency, for the CMOS frequency-
shift magnetic sensor. (b) Sensor measurement for the CDC scheme. With the CDC scheme enabled, noise
cancellation is achieved and leads to a noise floor of 63.7 Hz, i.e. 63.1 ppb at a 1.01 GHz center frequency. This
is overall 4.1dB noise suppression by the CDC technique in this measurement, which improves the sensitivity.
In both plots, a fixed offset of 500 Hz is added to fene in Order to separate the two curves of fenee and frs for
15 demonstration purpose.
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