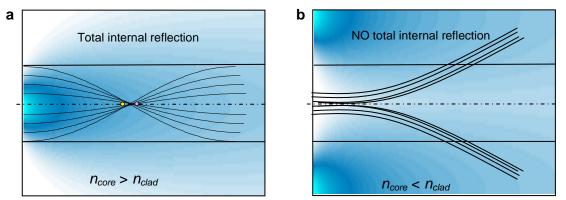
## **Electronic Supplementary Information**

## Transformation optofluidics for large angle light bending and tuning


Y. Yang<sup>1</sup>, L. K. Chin<sup>1</sup>, J. M. Tsai<sup>2</sup>, D. P. Tsai<sup>3</sup>, N. Zheludev<sup>4</sup> and A. Q. Liu<sup>1†</sup>

 <sup>1</sup>School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
<sup>2</sup>Institute of Microelectronics, Agency of Science, Technology and Research (A\*STAR), Singapore 117685
<sup>3</sup>Department of Physics, National Taiwan University, Taipei 10617, Taiwan
<sup>4</sup>Optoelectronics Research Centre, University of Southampton, United Kingdom (<sup>†</sup> Tel: +65 6790-4336; Fax: +65 6793-3318; Email: <u>eaqliu@ntu.edu.sg</u>)

## Contents

- (1)Comparisons of transformation optofluidic waveguide and optofluidic splitter
- (2)Optical micrograph of the demonstration of light splitting in the optofluidic splitter

## Comparisons of transformation optofluidic waveguide and optofluidic splitter



Transformation optofluidic waveguide



**Fig. S1** Theoretical explanation of the differences between (a) transformation optofluidic waveguide and (b) transformation optofluidic splitter.

Optical micrograph of the demonstration of light splitting in the optofluidic splitter

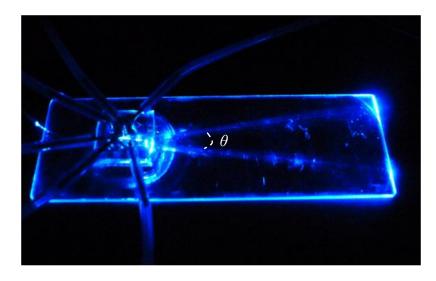



Fig. S2 Transformation optofluidic splitter with large split angle.