Multiple Electrokinetic Actuators for Feedback Control of Colloidal Crystal Size

Jaime J. Juárez^{a*}, Pramod P. Mathai^{b, c}, J. Alexander Liddle^{c†}, and Michael A. Bevan^{a†}

^aChemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, ^bMaryland Nanocenter, University of Maryland, College Park, MD 20742, ^cNational Institute for Standards and Technology, Center for Nanoscale Science and Technology, 100 Bureau Drive, Gaithersburg, MD 20899

Supplemental Information

Movies

200_target.avi (3MB): 200 particle crystal assembled using EPEO vs. NDEP.

150_target.avi (2.5MB): 150 particle crystal assembled using EPEO vs. NDEP.

100_target.avi (2.5MB): 100 particle crystal assembled using EPEO vs. NDEP.

50_target.avi (2MB): 50 particle crystal assembled using EPEO vs. NDEP.

Electric Field

The electrodes in a quadrupole device (modeled as four point poles) have an analytical electric potential given by, 1

$$V(x,y) = \frac{V_o}{2} \ln \left[\frac{x^4 + y^4 + 2(x^2 - y^2 + x^2y^2) + 1}{x^4 + y^4 + 2(y^2 - x^2 + x^2y^2) + 1} \right]$$
(1)

$$\boldsymbol{E} = -\nabla V(\boldsymbol{x}, \boldsymbol{y}) \tag{2}$$

where x and y are non-dimensional coordinates normalized by half the electrode gap (with the origin at the quadrupole center), V is the electric potential, V_o is the magnitude of the applied voltage, E is the electric field vector, and $E_{mag} = |\mathbf{E}|$ is the magnitude of the local electric field.

Dielectrophoresis

At high frequencies, induced dipoles on particles interact with the nonuniform electric field (Eq (1)). The in-plane spatial variation of this scalar potential energy $u^{dep}(x,y)$ and the associated time-averaged DEP force F^{dep} due to an inhomogeneous electric field E is given by,^{2,3}

$$u^{dep}(x, y) = -2kT\lambda f_{cm}^{-1} \left| \boldsymbol{E}^* \right|^2$$

$$\boldsymbol{F}^{dep} = -\nabla u^{dep}(x, y)$$
(3)

where k is Boltzmann's constant, T is absolute temperature, $\mathbf{E}^* = \mathbf{E}/E_0$ is the local normalized electric field, $E_0 = 0.5V_{pp}/d_g$ is the normalization constant with d_g being separation between cross

^{*} Performed part of research at National Institute for Standards and Technology.

[†] To whom correspondence should be addressed: mabevan@jhu.edu, liddle@nist.gov

electrode pairs and V_{pp} is the applied AC field's peak-to-peak voltage. The ratio λ of the relative polarization and Brownian energies⁴ is given as $\lambda = \pi \varepsilon_m a^3 (f_{cm} E_0)/kT$ where *a* is the radius of the colloidal particle. The Clausius-Mosotti factor, f_{CM} , determines whether the particle moves towards the field minima or maxima³ and is given by,³

$$f_{cm} = \operatorname{Re}\left[\left(\tilde{\varepsilon}_{p} - \tilde{\varepsilon}_{m}\right) / \left(\tilde{\varepsilon}_{p} + 2\tilde{\varepsilon}_{m}\right)\right]$$
(4)

where $\tilde{\varepsilon}_m$ and $\tilde{\varepsilon}_p$ are complex particle and medium permitivities of the form, $\tilde{\varepsilon} = \varepsilon - i\sigma/\omega$, where σ is conductivity, and ω is angular frequency. Particle conductivity is given as $\sigma_p = 2K_n/a$, where K_n is surface conductance.⁵ When $f_{cm} < 0$ ($f_{cm} > 0$) the particle is less (more) polarizable than the medium and is transported to the field minimum (maximum).

Electrophoresis and Electroosmosis

A potential difference applied at electrode surface causes ions with electrostatic double layers to move and drag fluid, a transport mechanism referred to as electroosmosis. Simultaneously, charged colloids undergo electrophoresis when they become attracted to electrodes of opposite polarity.⁶ The superposition of electrophoresis and electroosmosis is linearly proportional to the local electric field,⁷

$$\boldsymbol{V}_{EPEO} = \frac{\varepsilon_m \left(\zeta_p - \zeta_w\right)}{4\pi\mu} \boldsymbol{E}$$
(5)

$$\boldsymbol{F}_{EPEO} = 6\pi\mu a \boldsymbol{V}_{EPEO} \tag{6}$$

where μ is the medium viscosity and the zeta potential, ζ , where the subscripts denote particle (*p*) and wall (*w*). The force, F_{EPEO} , is the net electroosmotic flow scaled by the Stokes drag coefficient.

Size Dependent Crystallinity Order Parameter

To compute the size dependence of $\langle C_6 \rangle$ for 2D hexagonal close packed particles with a hexagon morphology, the total number of particles, *N*, based on the number of shells, *S*, (see Fig S1A) is given by,⁸

$$N = 3S(S+1) + 1$$
(7)

which can be inverted to obtain the number of shells based on the number of particles as,

$$S = -(1/2) + \left[(1/3)(N-1) + (1/4) \right]^{1/2}$$
(8)

The number of interior, vertex, and edge (non vertex) particles can be found from Eq (7) as,

$$N_{\text{interior}} = 3S(S-1) + 1$$

$$N_{\text{edge}} = 6S - 6$$

$$N_{\text{vertex}} = 6$$
(9)

which allows $\langle C_6 \rangle$ to be computed using individual particle C_6 values shown in Fig S1A as,

$$\langle C_6 \rangle_{HEX} = N^{-1} \Big[6N_{\text{interior}} + 4N_{\text{edge}} + 3N_{\text{vertex}} \Big] = N^{-1} 6 \Big(3S^2 + S \Big)$$
(10)

Juárez, et. al.

Although the above equations are intended for an integer number of shells, Eq (8) can be substituted for S on the right hand side of Eq (10) to compute $\langle C_6 \rangle$ as a continuous function of N.

To compute the size dependence of $\langle C_6 \rangle$ for 2D hexagonal close packed particles with a square morphology, *N*, can be related to the number of particles on one side of the square, *S*_P, (see Fig S1B) as,⁹

$$N = S_p \left(S_p + 1 \right) \tag{11}$$

which can be inverted as,

$$S_{P} = -(1/2) + \left[N + (1/4)\right]^{1/2}$$
(12)

The following formulas capture the number of particles having different individual C_6 values as,

$$N_{6} = (S_{P} - 2)(S_{P} - 1)$$

$$N_{5} = S_{P} - 1$$

$$N_{4} = 2(S_{P} - 2)$$

$$N_{3} = S_{P} + 1$$

$$N_{2} = 2$$
(13)

where the number of interior, $N_{\rm I}$, and edge, $N_{\rm E}$, particles can be found from Eq (13) as,

$$N_{\rm I} = (S_{\rm P} - 2)(S_{\rm P} - 1)$$

$$N_{\rm E} = 4S_{\rm P} - 2$$
(14)

Eq (13) also allows $\langle C_6 \rangle$ to be computed using individual particle C_6 values shown in Fig S1B as,

$$\langle C_6 \rangle_{SQ} = N^{-1} \sum_{x=2}^{6} x N_x = N^{-1} \left(6S_P^2 - 2S_P - 2 \right)$$
 (15)

which can be computed as a continuous function of N by substituting Eq (12) for S_P on the right hand side of Eq (15).

Size Dependent Radius of Gyration

To compute the radius of gyration, R_g , for 2D hexagonal close packed particles within regular polygon morphologies, it is useful to consider the area, A_{HCP} , occupied by N hexagonal close packed disks with area fraction, $\phi_{\text{HCP}}=6^{-1}\pi 3^{0.5}$, as,

$$A_{HCP} = \pi a^2 N \phi_{HCP}^{-1} = 6 \cdot 3^{-0.5} a^2 N$$
(16)

which can be equated to the area of a square, $A_{SQ}=L_{SQ}^2$, to determine the length of each side vs. N as,

$$L_{SO} = 6^{0.5} 3^{-0.25} a N^{0.5}$$
(17)

which can then be used in the expression for R_g for a square as,

Juárez, et. al.

$$R_{g,SO} = 2^{0.5} 12^{-0.5} L_{SO} = 3^{-0.25} a N^{0.5}$$
(18)

Similarly, A_{HCP} in Eq (16) can be equated to the area of a hexagon, $A_{\text{HEX}}=(3/2)3^{0.5}L_{\text{HEX}}^2$, to determine the length of each side vs. *N* as,

$$L_{HEX} = 2 \cdot 3^{-0.5} a N^{0.5} \tag{19}$$

which can then be used in the expression for R_G for a hexagon as,

$$R_{g,HEX} = 2^{-1} 5^{0.5} 3^{-0.5} L_{HEX} = 5^{0.5} 3^{-1} a N^{0.5}$$
(20)

Figure Captions

Figure S1. Hexagonally closed packed array of particles confined to (A) hexagon and (B) square morphologies with colors indicating the number of hexagonal close packed neighbors as $C_6 = 6$, blue; $C_6 = 5$, black; $C_6 = 4$, green; $C_6 = 3$, red; $C_6 = 2$, yellow.

References

- 1. G. R. Janik, J. D. Prestage and L. Maleki, *Journal of Applied Physics*, 1990, **67**, 6050-6055.
- 2. J. J. Juarez and M. A. Bevan, J. Chem. Phys., 2009, 131, 134704.
- 3. T. B. Jones, *Electromechanics of Particles*, Cambridge University Press, Cambridge, 1995.
- 4. P. M. Adriani and A. P. Gast, *Phys. Fluids*, 1988, **31**, 2757-2768.
- 5. C. T. O'Konski, Journal of Physical Chemistry, 1960, 64, 605-619.
- 6. J. L. Anderson, Ann. Rev. Fluid Mech., 1989, 21, 61-99.
- 7. H. J. Keh and J. L. Anderson, J. Fluid Mech., 1985, 153, 417-439.
- 8. B. D. Lubachevsky and R. L. Graham, in *Computing and Combinatorics*, eds. D. Z. Du and M. Li, Springer-Verlag Berlin, Berlin 33, 1995, vol. 959, pp. 303-312.
- 9. R. L. Graham and B. D. Lubachevsky, *Electronic Journal of Combinatorics*, 1996, **3**, 1-17.

Figure S1

