Electronic Supplementary Information:

Comprehensive Integration of Homogeneous Bioassays via Centrifugo-Pneumatic Cascading

Table S1 contains a geometrical description of the main parts featured in the figures describing the pneumatic tool kit as well as the main parameters regarding the operation mode.

Figure	Volumes	Operation	Operation times
number		frequencies	
Figure 3	Loading volume:	Air compression:	Emptying (150rpm)
Pneumatic	50µL	6000 rpm	1st chamber: ~ 5 min
cascade	Pneumatic chamber	Air release:	Emptying 2nd
Principle	total volume: 96µL	150 rpm	chamber: ~ 3 min
Figure 4a	Loading volume:	Air compression:	Emptying chambers
Mixing	50 µL	6000 rpm	(150rpm): ~5 min
	Pneumatic chamber	Air release:	Mixing: ~1 min
	total volume:96 μL	150 rpm	
Figure 4b	Loading volume:	Air compression:	Particles
Particle	100 µL	6000 rpm	sedimentation
sedimentation	Pneumatic chamber	Air release:	(6000 rpm): ~5 s
	total volume:139 μL	150 rpm	
	Sedimentation		
	sieve:48 μL		
Figure 4c	Loading volume:	Air compression:	Blood separation
Blood	100 µL	6000 rpm	(6000 rpm): ~ 2min
separation	Pneumatic chamber	Air release:	
	total volume: 139 μL	450 rpm	
	Sedimentation		
	sieve:48µL		
Figure 4d	Loading volume:	Air compression:	Emptying chamber
Metering	50 μL	6000 rpm	(150 rpm): ~4min
	Pneumatic chamber	Air release:	
	total volume:121 μL	450 rpm	
	Waste volume		
	chamber:11 μL		
Figure 4e	Loading volume:	Air compression:	Emptying (150 rpm)
Volumetric	50 μL/10 μL	6000 rpm	1st chamber: ~ 5 min
valving	Pneumatic chamber	Air release:	Emptying 2nd
	total volume:96 μL	150 rpm	chamber: ~ 4 min

Operational Principle

Simplified Approach

We want to approximate the radial shift Δr induce by a change in the angular spin rate from the filling phase at ω when the entrapped air of volume *V* with the radial height *d*, i.e. V = dA, of to a lower rate $\omega_2 < \omega_1$ which leads to an expanded volume V_2 (Figure 1). A_{left} and A_{right} denote the cross sections of the left and the right hand chambers, respectively, and $\tilde{A} = A_{\text{left}} / A_{\text{right}}$ their ratio. The radial differences of the liquid levels at the first and second frequencies are represented by h_1 and h_2 and the radial spacing from the centre of rotation as R_1 and R_2 . The liquid volume ΔV of density ρ is displaced as the entrapped air volume expands, shifting the liquid levels by Δr_{left} and Δr . The relation

$$\Delta r = \Delta r_{\rm left} \ \widetilde{A}$$

results from continuity of mass (assuming the incompressibility of the liquid). We can then express the difference of the liquid levels at ω_2

$$h_2 = h_1 + \Delta r + \Delta r_{\text{left}} = h_1 + (1 + \widetilde{A})\Delta r$$

in terms of the elevation of the meniscus in the right-hand branches Δr .

We first consider Boyle's law for the entrapped gas volume

$$\frac{p_1}{p_2} = \frac{V_2}{V_1} = \frac{V_1 + \Delta V}{V_1} = 1 + \frac{\Delta V}{V_1} = 1 + \frac{\Delta r}{d_1}$$
(1)

assuming a constant cross sections A_{left} of the compression chamber.

On the other hand, the hydrostatic pressure head in the centrifugally induced artificial gravity field $g_{\omega,i} = R_i \omega_i^2$ between the two vessels is obtained from

$$p_i = p_0 + \rho R_i \omega_i^2 h_i$$

with the environmental pressure p_0 . For large spacing from the centre of rotation R_i and small relative radial shifts of the menisci $\Delta r_{\text{left}} / R_i \ll 1$ and $\Delta r / R_i \ll 1$, i.e. $R_1 \approx R_2$, and we also assume $p_0 \ll p_i$. We then obtain a hydrostatic pressure ratio

$$\frac{p_1}{p_2} = \widetilde{\omega}^2 \frac{h_1}{h_2} = \widetilde{\omega}^2 \frac{h_1}{h_1 + \Delta r(1 + \widetilde{A})} = \widetilde{\omega}^2 \frac{1}{1 + \frac{\Delta r}{h_1}(1 + \widetilde{A})} \xrightarrow{\frac{\Delta r}{h_i} <<1} \widetilde{\omega}^2$$
(2)

with the spin rate ratio $\tilde{\omega} = \omega_1 / \omega_2$. Combining the pressure ratios from Boyle's law (1) and the hydrostatic pressure heads in two spin phases (2) eventually yields the radial shift of the right-hand meniscus

$$\Delta r = d_1 \cdot \left| 1 - \tilde{\omega}^2 \right| \tag{3}$$

which is responsible for triggering the right-hand siphon. So within the limitations of the coarse approximation (1) which assumes vanishing environmental pressure $p_0 << p_i$, constant chamber cross sections A_i and small radial changes, the lift of the meniscus Δr in the right chamber with $\omega_2 < \omega_1$ essentially scales with the radial height d_1 of the gas volume entrapped after the priming phase at ω_1 and with the square of the ratio of the spinning frequencies $0 < \tilde{\omega} < 1$.

Figure S1. Schematic representation of one pneumatic unit as a core constituent of the pneumatic cascade.

Exact Calculation for Simplified Geometry

For a more exact calculation, the gas volume V_0 measured at the environmental pressure p_0 would have to be known (it depends on the detailed course of the priming process) and we obtain $p_0 V_0 = p_1 V_1 = (p_0 + \rho R_1 \omega_1^2 h_1) d_1 A_{\text{left}}$ using Boyle's law (1) again which can be rewritten using $R_1 = R_{\text{left}} + d_1$ to express the initial split of the liquid levels

$$h_{1}(\omega_{1}) = \left(\frac{V_{0}}{d_{1}A_{\text{left}}} - 1\right) \frac{p_{0}}{\rho (R_{\text{left}} + d_{1})\omega_{1}^{2}}$$

as a mere function of the initial spin rate ω_1 and known values. So the more detailed calculation of the pressure ratio yields

$$\frac{p_1}{p_2} = \frac{p_0 + \Gamma R_1 W_1^2 h_1(W_1)}{p_0 + \Gamma R_2 W_2^2 h_2} = \frac{p_0 + \Gamma (R_{\text{left}} + d_1) W_1^2 h_1(W_1)}{p_0 + \Gamma [R_{\text{left}} + d_1 + \frac{\mathsf{D}r}{\tilde{A}})} \bigg] W_2^2 \bigg[h_1(W_1) + (1 + \tilde{A}) \mathsf{D}r \bigg]$$
(4)

So equating (1) with (4) provides an equation for Δr which explicitly reads

$$\frac{V}{1 + \frac{\Gamma}{p_0} \left[R_{\text{left}} + d_1 + \frac{Dr}{\tilde{A}} \right] W_2^2 \left[\left[\left(\tilde{V} - 1 \right) \frac{p_0}{\Gamma \left(R_{\text{left}} + d_1 \right) W_1^2} \right] + \left(1 + \tilde{A} \right) Dr \right]} = 1 + \frac{Dr}{d_1}$$

as a function and known experimental parameters, i.e. the entrapped gas volume V_0 measured at the environmental pressure p_0 , the liquid density ρ , the geometry and alignment if the disc-based structures characterized by the cross section of the compression chambers A_{left} , and $A_{\text{right}} = A_{\text{left}} / \tilde{A}$, the radial distance of the upper edge of the compression chamber from the centre of rotation R_{left} , and the radial extension of the entrapped gas pocket d_1 measured at the angular frequency ω_1 , and the volume compression ratio $\tilde{V} = V_0 / V_1 = p_1 / p_0$. We can rewrite

$$\left(1+\frac{\mathsf{D}r}{d_1}\right)\left[1+\frac{r}{p_0}\left[R_{\mathrm{left}}+d_1+\frac{\mathsf{D}r}{\tilde{A}}\right]W_2^2\left[\left(\tilde{V}-1\right)\frac{p_0}{r(R_{\mathrm{left}}+d_1)W_1^2}\right]+\left(1+\tilde{A}\right)\mathsf{D}r\right]\right]-\tilde{V}=0$$
(5)

so the exact (at least when assuming constant cross sections A_{left} and A_{right}) radial shift $\Delta r(\omega_1, \omega_2)$ is the solution of this inhomogeneous cubic equation.