Derivation of the cross-sectional area of the virtual channel

Cross-section of the virtual channel can be divided into a trapezoid and two segments, one on each side. The width of the channel at the top w_{t} changes with bulging and can be expressed as a function of the sidewall radius of curvature R_{S} and the bottom contact angle θ_{S}. This is illustrated in Fig. A1.

Fig. A1: Cross-section of the virtual channel.
The total cross-sectional area A is given then by

$$
\begin{equation*}
A=A_{T}+2 A_{S} \tag{A1}
\end{equation*}
$$

where A_{T} is the trapezoid area and A_{S} is the segment area.
The area of a trapezoid is defined as

$$
\begin{equation*}
A_{T}=h\left(w_{t}+w\right) / 2 \tag{A2}
\end{equation*}
$$

The width at the top is defined as

$$
\begin{equation*}
w_{t}=w-2 c \tag{A3}
\end{equation*}
$$

where $c=R_{S} \sin \theta_{s}$. Substituting A3 into A2 and simplifying leads to the trapezoid area

$$
\begin{equation*}
A_{T}=h\left(w-R_{S} \sin \theta_{S}\right) \tag{A4}
\end{equation*}
$$

The area of a circular segment is defined as

$$
\begin{equation*}
A_{S}=\frac{R_{s}{ }^{2}}{2}\left(\frac{\theta_{s} \pi}{180}-\sin \theta s\right) \tag{A5}
\end{equation*}
$$

Substituting A4 and A5 into A1 yields the cross-sectional area of a virtual channel as:

$$
\begin{align*}
A & =h\left(w-R_{S} \sin \theta_{S}\right)+\frac{R_{S}^{2}}{2}\left(\frac{\theta_{s} \pi}{180}-\sin \theta s\right) \\
& =h w-R_{S} \sin \theta s\left(h+R_{S}\right)+\frac{\theta_{S}}{180} \pi R_{S}{ }^{2} \tag{A6}
\end{align*}
$$

