Improved Silicon Nanowire Field-effect Transistors for Fast Protein-protein

Interaction Screening

(Supplementary Information)

Ti-Yu Lin^a, Bor-Ran Li^{b,c}, Sheng-Ta Tsai^d, Chien-Wei Chen^{b,c}, Chung-Hsuan Chen^d, Yit-Tsong Chen^{b,c}, and Chien-Yuan Pan^{a,e},*

* CORRESPONDING AUTHORS

Dr. YT Chen, Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan; E-mail: ytcchem@ntu.edu.tw, Fax: (+886) 2-2363-6359

Dr. CY Pan, Institute of Zoology and Department of Life Science, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 106, Taiwan; E-mail: cypan@ntu.edu.tw, Fax: (+886) 2-2363-6837

^aInstitute of Zoology, National Taiwan University, Taipei, Taiwan

^bDepartment of Chemistry, National Taiwan University, Taipei, Taiwan

^cInstitute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan

^dGenomics Research Center, Academia Sinica, Taipei, Taiwan

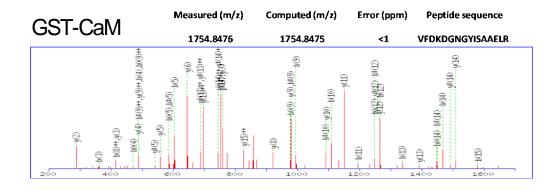
^eDepartment of Life Science, National Taiwan University, Taipei, Taiwan

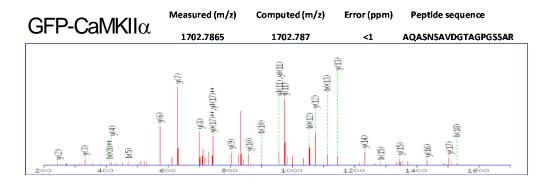
Table S1. CalnI-interacting candidates

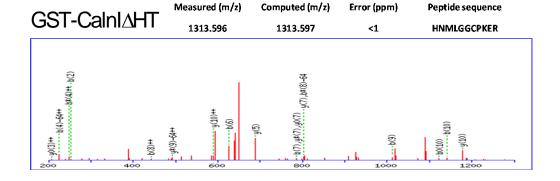
Classification	Accession no. (Swiss-Prot)	Protein description	pI	Sequence coverage (%)	Mean error (ppm)	Cellular role
Cytoskeletal regulation	P60711	α-actin	5.29	42.9	1	Cytoskeletal protein
	P45592	Cofilin-1	8.22	15.7	<1	Actin-depolymerizing factor
	Q7M0E3	Destrin	7.30	8.2	1	Actin-depolymerizing factor
Vesicle transportation	Q68FP1	Gelsolin	5.76	2.2	<1	Actin-depolymerizing factor
	Q07936	Annexin A2	7.55	20.4	<1	Calcium-regulated membrane-binding
	P07150	Annexin A1	6.97	8.1	<1	Calcium/phospholipid-binding
Protein folding	Q6B345	Protein S100-A11	5.61	21.4	2	Ca ²⁺ binding
	Q07439	Heat shock 70 protein 1A/1B	5.61	11.4	<1	Molecular chaperone
	P63018	Heat shock cognate 71 kDa protein	5.37	5.6	<1	Molecular chaperone

	P04785	Protein disulfide-isomerase	4.82	3.1	<1	Catalyzes the rearrangement of disulfide bonds
	P42930	Heat shock protein beta-1	6.12	4.9	<1	Molecular chaperone
Signal transduction	P10111	Peptidyl-prolyl cis-trans isomerase A	8.34	8.5	<1	Catalyzes the cis-trans isomerization of proline imidic peptide bonds
	P63102	14-3-3 protein zeta/delta	4.73	16.3	<1	Adapter protein
	P68511	14-3-3 protein eta	4.81	6.5	2	Adapter protein
	P38983	40S ribosomal protein SA	4.80	14.9	2	Receptor for laminin
	P09527	Ras-related protein Rab-7a	6.80	6.4	<1	Small GTPase signaling
Glycolysis	P04764	α-enolase	6.16	10.6	<1	Glycolytic enzyme
	P48500	Triosephosphate isomerase	6.89	11.2	1	Glycolytic enzyme
	P04642	L-lactate dehydrogenase A chain	8.45	8.1	1	Glycolytic enzyme
	P25113	Phosphoglycerate mutase 1	6.67	8.3	1	Glycolytic enzyme

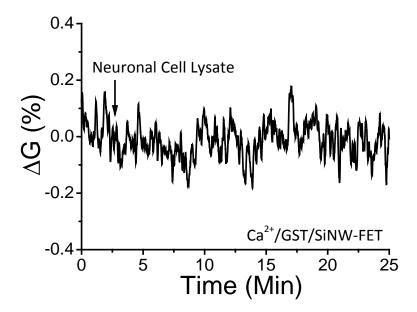
Protein biosynthesis	P05197	Elongation factor 2	6.41	4.3	2	Catalyzes ribosomal translocation during translation elongation
	P62630	Elongation factor 1-alpha	9.10	7.6	1	Promotes the binding of aminoacyl-tRNA to the A-site of ribosomes
Others	Q6P0K8	Junction plakoglobin	5.75	26.3	1	Desmosome protein
	P62982	Ubiquitin-40S ribosomal protein S27a	9.68	10.3	<1	Proteolysis
	P55053	Fatty acid-binding protein, epidermal	6.73	6.7	1	Lipid binding


Neuronal cell lysate was passed through the CalnI Δ HT modified SiNW-FET in the presence of Ca²⁺ and the bound proteins were eluted for MS analysis. Proteins with sequence coverage of > 2% and a mean error of < 2% are listed and classified into 7 categories. The pIs and brief descriptions of functions are provided.


Table S2. Nonspecific binding of the neuronal lysate to the GST/SiNW-FET device.


Accession no.	Duotain description	"I	Sequence	Mean error
(Swiss-Prot)	Protein description	pI	coverage (%)	(ppm)
P68370	Tubulin α1A chain	4.94	10.6	0
P06302	Prothymosin α	3.75	25.9	<1
P69897	Tubulin β5 chain	4.78	6.8	<1
P02091	Hemoglobin subunit β1	7.88	15.6	<1
P15865	Histone H1.2	11.1	7.3	1
P63312	Thymosin β10	5.31	31.8	1
P62161	CaM	4.09	8.7	1
P62329	Thymosin β	5.02	31.8	1

The molecules in the neuronal lysate that was bound onto the GST/SiNW-FET were eluted and used for MS analysis. Proteins with sequence coverage of > 2% and mean errors of < 2% are listed. pI: isoelectric point


Figure S1. The MS fragmentation spectra of the eluted GST-CaM, GFP-CaMKII α , and GST-CalnI Δ HT.

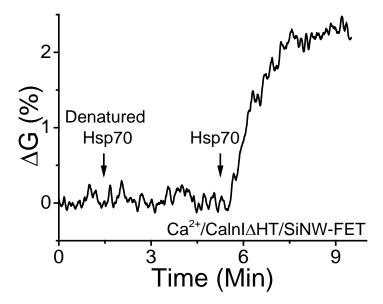


Figure S2. A GST/SiNW-FET did not respond to the neuronal cell lysate in the presence of Ca^{2+} .

Figure S3. CalnI did not interact with the denatured Hsp70. Denatured Hsp70, which was boiled in water for 10 min, had no effect on the electrical conductance of the Ca²⁺/CalnIΔHT/SiNW-FET. After replacing the denatured Hsp70 with native Hsp70, an increase in the conductance was observed.

