Supporting Information

Trace analysis of mercury (II) ions using aptamermodified Au/Ag core-shell nanoparticles and SERS spectroscopy in microdroplet channel

Eunsu Chung, ^{†a} Rongke Gao, ^{†a} Juhui Ko, ^a Namhyun Choi, ^a

Dong Woo Lim, ^a Eun Kyu Lee, ^b Soo-Ik Chang, ^c and Jaebum Choo* ^a

^aDepartment of Bionano Engineering, Hanyang University, Ansan 426-791, South Korea,

^bCollege of Bionanotechnology, Gacheon University, Sungnam 461-701, South Korea,

^cDepartment of Biochemistry, Chungbuk National University, Cheongju 361-763, South Korea

Submitted to

Lab on a Chip (revised)

October 2012

†Joint first authors

*Corresponding author

Address for correspondence:

Jaebum Choo

Telephone: +82-31-400-5201; Fax: +82-31-436-8188; E-mail: jbchoo@hanyang.ac.kr

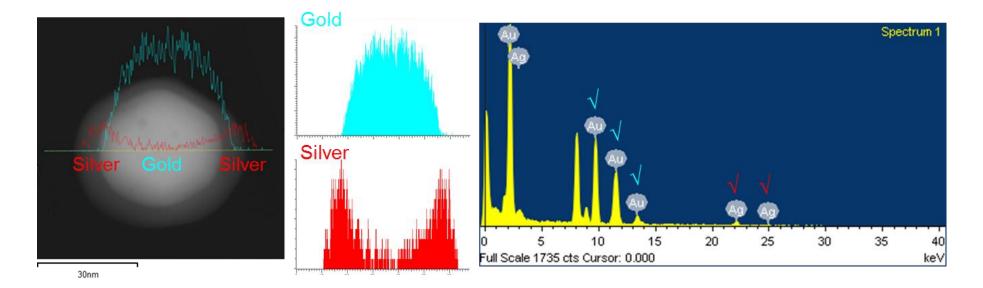


Figure S1. FE-TEM image and EDS profile for a ds DNA-embedded Au/Ag core-shell nanoparticle (4 nm silver shell thickness).

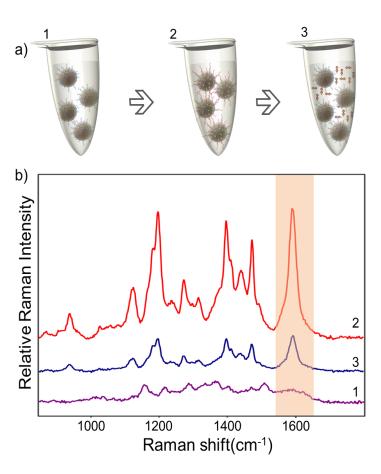


Figure S2. (a) Schematic illustration of Hg $^{2+}$ sensing process and (b) SERS spectrum of DNA conjugated Au $_{core}$ /Ag $_{shell}$ (1), an aptameric biosensor in the absence of Hg $^{2+}$ (2), an aptameric biosensor in the presence Hg $^{2+}$ of 100 μ M (3). In the presence of mercury (II) ions, Cy3-labeled DNA aptamers are released from the metal surface causing a decrease in the observed SERS signal intensity. Major peak of Cy3 was expressed at 1590 cm $^{-1}$.

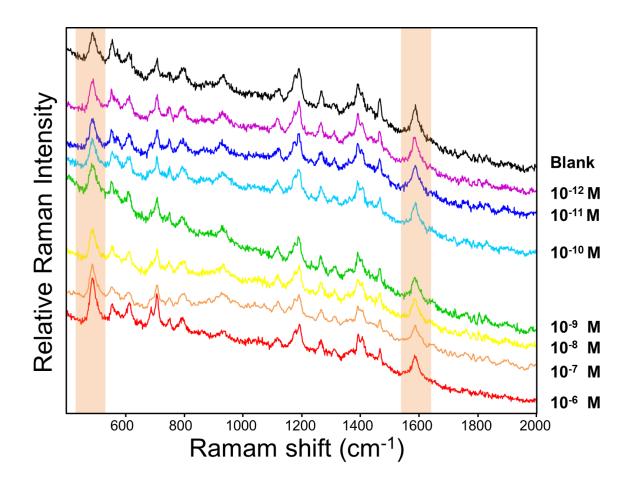


Figure S3. Concentration-dependent raw SERS spectra of Cy3 in PDMS microdroplet channel. Concentration ranged from 10^{-12} to 10^{-6} M.