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Small decay length model

We now consider a channel of finite length LE in the limit
dL/H � 1, i.e., when the decay length is small compared to
the channel height. In this limit, the concentration in Eq. (9)
rapidly decays to the value k outside of a boundary layer near
the wall. The sharp definition of the boundary layer suggests
that a first approximation to the transport problem may be ob-
tained by dividing the column into a convective phase and a
stagnant phase similar to the analysis of SEC columns. The
convective phase contains the molecules outside of the bound-
ary layer while the stagnant phase contains the molecules in-
side the boundary layer. At a given axial position z, the relative
number of molecules in the two compartments are assumed to
be given by Eq. (9). In the convective phase the number of
molecules (per unit column length and column width) is given
to a first approximation as

n1 =
∫ H

x=−H
kdxW = 2HWk (S.1)

The corresponding number of molecules in the stagnant phase
is then

n2 =
∫ H

x=−H
[c(x)− k]dxW = H

∫
∞

y=0
[c(x′)− k]dx′W. (S.2)

Here x′ = 1+ x/H and the range on x′ has been extended to
infinity. Due to the sharp definition of the boundary layer this
has a negligible effect on the value of the integral. For the
profile in Eq. (9), the integrand in Eq. (S.2) may be expanded
in a Taylor series to obtain

c(x′)− k = k
∞

∑
n=1

(−Φ)n

n!
exp
(
− 2nx′

dL/H

)
(S.3)

The integral in S.2 is simply evaluated to obtain

n2 = kHW
∞

∑
n=1

(−Φ)n

n!
dL/H

2n
. (S.4)
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Now if we define the partition coefficient K as

n2 = Kn1, (S.5)

then
K =

dL

4H
F(Φ), (S.6)

where we have defined the function

F(Φ) =
∞

∑
n=1

(−Φ)n

n!n
. (S.7)

While the present treatment is concerned with Φ < 0 (attrac-
tion) the expression above may be used also for Φ > 0 (deple-
tion). The latter situation corresponds to a SEC column. Note
that the value of k does not enter in the value of K. This allows
the derivation of a model for a column of finite length in which
the concentration is equilibrated at all axial positions. This is
possible because the potential Φ is essentially zero outside of
the boundary layer. Therefore Eq. 1 reduces to the advection-
diffusion equation outside of the boundary layer. Hence the
transport of solute molecules in this phase may be described
by the Taylor-Aris dispersion model. In particular, molecules
n1 are advected in the axial direction on average with a mean
flow velocity and dispersed with an effective dispersion coef-
ficient

DT = D
(

1+
2

105
Pe2
)
. (S.8)

A mass balance on a cross-section of the column therefore
gives

∂n1

∂ t
+

∂n2

∂ t
+ v

∂n1

∂ z
−DT

∂ 2n1

∂ z2 = 0, (S.9)

where n2 may be eliminated by Eq S.5. This results in the
dimensionless unsteady second order equation

τp
∂n1

∂ t
+

∂n1

∂ z̄
− 1

PeL

∂ 2n1

∂ z̄2 = 0, (S.10)

where
τp = τ f (1+K), (S.11)

and the axial Peclet number is defined as

PeL =
U f LE

DT
=

Pe
1+ 2

105 Pe2
LE

H
.. (S.12)

1–2 | 1

Electronic Supplementary Material (ESI) for Lab on a Chip
This journal is © The Royal Society of Chemistry 2013



The Laplace transformation of Eq. S.10 for a column that
is empty at t = 0 yields in Laplace space

N1(s,1) = N1(s,0)exp

(
PeL−

√
PeL(PeL +4τps)

2

)
,

(S.13)
where N1(s, z̄) is the Laplace transformation of n1(t, z̄). Given
a unit pulse input (N1(s, z̄) = 1), we arrive at

n1(z = 1) =
1

2τp

(
Peτ3

p

πt3

) 1
2

exp
(

Pe
4

(
2− t

τp
−

τp

t

))
.(S.14)

For large values of PeL, the time signal becomes symmetric
and centered around t = τp. We may therefore expand in t−τp
to find the normal distribution given by

n1(z = 1)≈ 1
2τp

(
PeL

π

)1/2

exp

(
−PeL

4
(t− τp)

2

τ2
p

)
(S.15)

n1(z = 1)≈ 1√
2π

1
σ

exp
(
−1

2
(t− τp)

2

σ2

)
. (S.16)

From which it is clear that τp is the retention time and σ2 =
2τ2

p/PeL is the variance of the signal.
It follows that the resolution for the small decay length

model is given by

RSDLM =
1

2
√

2

(
Pe

1+ 2
105 Pe2

) 1
2 (LE

H

)1/2 |τ2− τ1|
τ2 + τ1

, (S.17)

where

|τ2− τ1|
τ2 + τ1

=
dL
4H |F(−Φ2)−F(−Φ1)|

2+ dL
4H (F(−Φ2)+F(−Φ1))

. (S.18)

Note that there exists an optimum resolution corresponding to
Pe =

√
105/2≈ 7.2.

Numerical Methods

Infinite Series of Fields

For an infinite series of optical fields, a steady state calcula-
tion for c(x,z) is performed in COMSOL. The retention ratio,
χ f , is determined by numerically integrating the numerator
and denominator of Eq. 7 using the steady state concentration
profile. The specifics of the COMSOL model used in the in-
finite series analysis are as follows. The Transport of Diluted
Species module with the Migration in Electric Field option
was used to carry out all simulations. Both Streamline diffu-
sion and crosswind diffusion stabilization options were turned

off. Periodic conditions were prescribed at the left and right
boundaries given by,

c(z = 0) = c(z = ds), (S.19)

and a no flux condition prescribed at the top and bottom
boundaries. The constants used for these calculations are
given in Table 2.

Discrete Number of Fields

For calculations concerning a discrete number of defects, one
domain of size LT is specified in a rectangular geometry. The
region before the electric field accounts for dispersion in the
solute concentration before entering the region where the ra-
dial and axial particle concentrations are affected by the polar-
ization potential. Up is determined by the time required t f for
the mean of the concentration distribution to pass through the
length LE , i.e.,

Up =
LE

t f
. (S.20)

The region after the electric fields is where the resulting con-
centration distributions of different sized particles/molecules
are assessed in order to calculate the resolution of separation
using Eq. 8. The specifics of the COMSOL model used in
this analysis are as follows. The Transport of Diluted Species
module with the Migration in Electric Field option was used
to carry out all simulations. Both Streamline diffusion and
crosswind diffusion stabilization options were turned off. A
Gaussian distribution was assumed for the initial condition
given by

c(t = 0,x,z) = c0 exp
(
−(z−Zc,0)

2

2σ2
c

)
, (S.21)

where Zc,0 is the initial z position of the concentration profile
and σ2

c is the initial variance of the solute concentration dis-
tribution and a no flux boundary condition is specified on both
the top and bottom walls. Constants used in all COMSOL
simulations are specified in Table 1.

Meshing

A custom free triangular mesh was specified with max element
size less than 0.18 µm and refinement around a secondary
boundary that began 10 µm before the first electric field and
ended 10 µm after, with a max element size less than 0.05 µm.
The Generalized alpha time stepping method was used with a
time step ≤ L/

(
600U f

)
.
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