
Electronic Supplementary Information

A Doubly Cross-linked Nano-adhesive For the Reliable Sealing of Flexible Microfluidic Devices

Jae Bem You, Kyoung-Ik Min, Bora Lee, Dong-Pyo Kim, Sung Gap Im

Figure 1S. XPS C1s high resolution scan for PGMA (top) and PGMA reacted with EDA (bottom).

Table 1S. Burst pressures obtained from different bonding methods reported in the literature.

Bonding Method	Sample	Channel dimensions (μm)	Maximum Burst Pressure (kPa)	Reference
DCNA	PET/glass	W: 100 H: 50	11700	-
iCVD deposition	PDMS/glass	W: 400 H: 150	>1035	Chem. Mater. 2010 , 22, 1732
APTES and GPTES-assisted bonding	PDMS/U- PET	W: 500 H: 150	>607	Lab Chip 2010 , 10, 1274
APTES-assisted bonding	PDMS/PC	W: 600 H: 45	>528	Lab Chip 2011 , 11, 962
PDMS-assisted interfacial bonding	PDMS/PET	-	400	Adv. Mater. 2011, 23, 5551
PU bonding (dry and wet)	PU/PU	W: 150 H: 10	326.4±19.6	Lab Chip 2012 , 12, 960

Movie 1S. Movie showing a PET/PET microfluidic device completely folded. As shown, the device operates well even when it is completely folded.

Movie 2S. Movie showing a PDMS/PET microfluidic device rolled and fastened around a pen. As shown, the device operates well without any delamination.