Electronic Supplementary Information Exploring a Direct Injection Method for Microfluidic Generation of Polymer Microgels

Yihe Wang,^{*a*} Ethan Tumarkin,^{*a*} Diego Velasco Bayon,^{*a*} Milad Abolhasani,^{*b*} Willie Lau,^{*c*} and Eugenia Kumacheva^{*a,d,e}

1. Materials

SU-8 50 photoresist was supplied from MicroChem Corp. (Newton, MA, USA). Poly(dimethyl siloxane) (PDMS; Sylgard 184) was obtained from Dow Corning (Midland, MI, USA). The ultra-low gelling temperature agarose (SeaPrep) was obtained from Lonza Rockland Inc. (Rockland, ME, USA). Phosphate buffered saline (PBS), mineral oil, sorbitan monooleate (Span 80) and methyl- β -cyclodextrin (MCD) were supplied by from Sigma (St. Louis, MO, USA). Sodium dodecyl sulfate (SDS) and glycerol were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). ABIL EM90 was donated by Evonic Goldschmidt Corp. (Hopewell, VA, USA). Poly(ethylene glycol) end-terminated with octadecyl unimer groups (PEG-ODU; molecular weight 20 kg/mol) was synthesized and purified as described elsewhere.^{1,2}

2. Dimensions of channels in the microfluidic devices

We used MF devices with a similar design for the preparation of agarose and PEG-ODU microgels. The height of the microchannels was 60 μ m. The dimensions of the microchannels were W_o=67 μ m, W_{a1}=60 μ m, W_s=100 μ m and W_o'=100 μ m

(Fig. S1). The widths of the side channels used for direct injections were W_{a2} =100 µm (Fig. S1a) and W_{a2} '=30 µm (Fig. S1b) for the preparation of agarose microgels and PEG-ODU microgels, respectively.

Fig. S1. Design of MF device used for the preparation of microgels. (a) and (b) shows the widths of the injection channels used for the preparation of agarose microgels and PEG-ODU microgels, respectively.

3. Viscosity of agarose solutions

Fig. S2. Variation in viscosity of agarose solutions, plotted as a function of weight concentration of agarose. The shear rate was 125 s^{-1} , the temperature is $37 \text{ }^{\circ}\text{C}$.

4. Size distribution of agarose microgels

Experiment was conducted as $C_1=2$ wt.%; $C_2=5$ wt.%; and Q_i , Q_{ii} and Q_{iii} of 0.1, 0.05 and 0.05 mL/hr, respectively. Injection was conducted at $Q_{iii}=0.05$ mL/hr, at which the maximum volume of $1.85 \times 10^5 \,\mu\text{m}^3$ of 5 wt.% agarose solution was injected to the primary plugs (at $V_2/V_3=0.28$). D_d is the diameter of the microgels. The data points of D_d were fitted with Gaussian distribution. The polydispersity of the microgels was 3.4%.

Fig. S3. Distribution of diameters of agarose microgels

5. Viscosity measurements of MCD+PEG-ODU and SDS+MCD+PEG-ODU solutions

Viscosities of mixed solutions PEG-ODU+MCD at different α (defined as molar ratio between MCD and PEG-ODU) were measured by adding a particular amount of MCD (solid) to a PEG-ODU solution, while maintaining the concentration of PEG-ODU at 8 wt.%. The solution was mixed (for 10 min at 37 °C) to achieve complete MCD dissolution.

Similarly, viscosities of PEG-ODU+MCD+SDS mixtures in water at different β (defined as the molar ratio of SDS-to-MCD) were measured by adding a particular amount of SDS (solid) to the solution of PEG-ODU and MCD, while maintaining the constant concentrations of PEG-ODU and MCD at 4 wt.% and 0.5 wt.%, respectively. After addition of SDS, the system was mixed for 10 min to achieve full SDS dissolution.

6. Videos of injections of agarose and SDS solutions in primary plugs

The scale bars in the videos of injections of agarose and SDS solutions are 200 and $100 \ \mu m$, respectively.

Notes and References

^aDepartment of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada ^bDepartment of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada ^cThe Dow Chemical Company ^dInstitute of Biomaterials & Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada ^eDepartment of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada *E-mail: ekumache@chem.utoronto.ca

- 1 Q. T. Pham, W. B. Russel and W. Lau, J. Rheol., 1998, 42, 159-176.
- 2 Q. T. Pham, W. B. Russel, J. C. Thibeault and W. Lau, *Macromolecules*, 1999, **32**, 2996-3005.