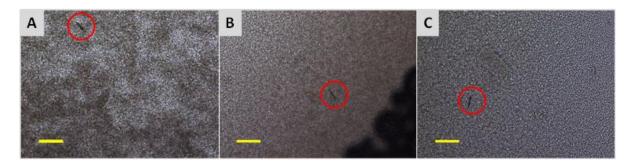

Supporting Information


Challenges of the Movement of Catalytic Micromotors in Blood

Guanjia Zhao, Marlitt Viehrig, Martin Pumera*

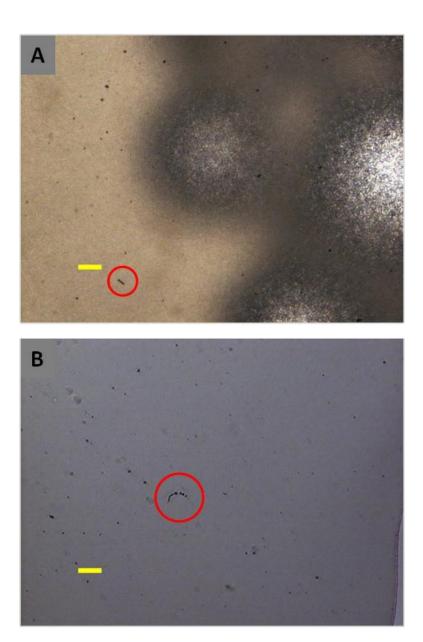

Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

Figure S1. Schematics of the concept demonstrated in the paper. Motion of the microjets in (A) phosphate buffer saline solution (pH 7.2) and (B) red blood cell ($\sim 5 \times 10^6$ cell/ μ L) and serum mixture of concentration corresponding to that of the blood. Both solutions contained 3% (wt) H₂O₂ as fuel and 1% SDS. The microjets were prepared by rolled-up technology. Scale bar indicates 100 μ m.

Figure S2. Motion of the rolled-up microjets in red blood cell (\sim 5×10⁶ cell/ μ L) and serum mixture of concentration corresponding to the concentration in the blood. (A) 3% (B) 6% and (C) 9% (wt) H₂O₂ as fuel and 1% SDS. Scale bars indicate 100 μ m.

Figure S3. Motion of the templated- electrochemical deposition technology prepared microjet motor in (A) red blood cell (\sim 5×10⁶ cell/ μ L) and serum mixture of concentration corresponding to the concentration in the blood and (B) phosphate buffer saline solution (pH 7.2). Both solutions contained 3% (wt) H₂O₂ as fuel and 1% SDS. Scale bars indicate 50 μ m.