Electronic Supplementary Material (ESI) for Lab on a Chip Controlled microfluidic switching in arbitrary time-sequences with low drag

Cassandra S. Niman, Jason P. Beech, Jonas O. Tegenfeldt, Paul M.G. Curmi, Derek N. Woolfson, Nancy R. Forde, and Heiner Linke

Switching time dependence on diffusion coefficient

The concentration dependence on the diffusion coefficient of the solute, D, is described by equations 7 and 8 of the main text. We determined t_s numerically because a function describing the dependence of t_s on D is not available in closed, analytic form. In Figure S-1 we show t_s for varying D at a constant average fluid velocity, v = 3.3 mm/s. The solid lines show the region where Taylor-Aris theory is expected to be valid, that is, where $y > 100 y_D$ with

Figure S-1: The switching time, t_s as a function of position y along the channel (y = 0 as defined by the red dot in Figure 4). The curves show the predicted results for switching times t_s from the Taylor-Aris model for different solute diffusion coefficients, as indicated, for v = 3.3 mm/s. The solid lines indicate where the theory is within its range of validity, $y >> y_D$ (see Eqs. S-1). The dashed lines show the region where $y < 100 y_D$. Also shown are the switching times measured with TIRFM at multiple positions along the channel for one pressure settings, corresponding to v = 3.3 mm/s and $D = 4.9 \cdot 10^{-10}$ mm²/s.

We observe t_s to decrease for increasing *D*, and attribute this behavior to improved diffusional mixing: for a higher *D*, it takes the molecules less time to diffuse from the boundary of the channel where fluid velocity is low to a region of higher fluid velocity.