Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

10

Supplemental Information

Integrating biological vasculature into a multi-organ-chip microsystem:

Supplemental Information

Katharina Schimek, Mathias Busek, Sven Brincker, Benjamin Groth, Silke Hoffmann, Roland Lauster, Gerd Lindner, Alexandra Lorenz, Ulrike Menzel, Frank Sonntag, Heike Walles, Uwe Marx and Reyk Horland

Description of Movies in Supporting Information

15 Movie S1. Working principle of the micropump

The MOC was loaded with red blood cells in a 0.9% NaCl solution (physiological haematocrit of 40%) and the pumping cycle was started at a pumping frequency of 0.476 Hz. The four different stages of the pumping cycle can be clearly identified by the retention time of the solution in the different pumping chambers.

20 Movie S2. Morphological adaptation of HDMECs to shear stress in the MOC

The MOC was heated to 37°C and the HDMECs were loaded into the MOC as described, followed by static incubation for 3 h to allow the cells to attach. Subsequently, dynamic cultivation was started with a pumping frequency of 0.476 Hz. Images were acquired by two-photon laser scanning microscopy at 5 min intervals for 66 h.

25 Movie S3. Three-dimensional reconstruction of a microchannel after cultivation with HDMECs for 4 days

HDMECs were stained for CD31 (red), vWF (green) and Hoechst 33342 (blue) as described. A three-dimensional image stack (1000 x 1000 pixels, depth increment 2 μ m) was taken by two-photon laser scanning microscopy and processed using Imaris software.