Scaling and systems biology for integrating multiple organs-on-a-chip

John P. Wikswo^{* *a,b,c*}, Erica L. Curtis,^{*a,b*} Zachary E. Eagleton,^{*a,b*} Brian C. Evans,^{*a,b*} Ayeeshik Kole,^{*a,b*} Lucas H. Hofmeister,^{*a,b*} and William J. Matloff^{*a,b*}

Electronic Supplementary Information (ESI)

We provide in both PDF and Excel formats a Scaling Spreadsheet with ~250 physiological parameters describing brain, heart, kidney, liver, lung, and blood. In this section, we also discuss in more detail than in the manuscript the Shannon-Wiener Index as a measure of cellular heterogeneity.

Cellular Heterogeneity

The Shannon-Wiener Index (*SWI*)^{1;2} provides a useful measure of the effective heterogeneity of organs that can guide organ-on-chip (OoC) and human organ construct (HOC) design:

$$SWI = -\sum_{i}^{N} p_{i} \log_{2} p_{i}$$

where there are *N* cell types and p_i is the probability that a cell is of type *i*. By using log base 2, we compute *SWI* in bits. The Diversity Index (*DI*)¹ is simply 2^{SWI} and indicates the effective

number of cell types in the tissue. If we have only one cell type in a tissue, then $SWI = -1 \log_2 1 = 0$, and DI = 1. If we have two cell types that are equally abundant (*i.e.*, $p_1 = p_2 = 0.5$), SWI = -(0.5) $\log_2(0.5) + 0.5 \log_2(0.5)$ = -(0.5 × -1 + 0.5 × -1) = 1. If we have two cell types with disparate abundances (e.g., $p_1 = 0.1$ and $p_2 =$ 0.9), then $SWI = -(0.1 \log_2(0.1) + 0.9 \log_2(0.9)) = -(0.1 \times -3.32 + 0.9)$ $(0.9 \times -.152) = -(-.332 + -.136) = 0.469$, and $DI = 2^{0.469} = 1.38$. So the more monodisperse (less heterogeneous) is a two-cell tissue, the closer the SWI is to 0 because one cell type dominates. The more heterogeneous the tissue, then the closer is SWI to 1, since each cell type is equally represented (DI = 2). If the abundance of the two cell types is imbalanced, then the SI is intermediate between 1 and 2. Table S1 lists SWI and DI for several organs, which we can use in designing and validating OoCs and HoCs. The sources of the brain data are listed in the Scaling Spreadsheet. We were unable to identify from the literature a selfconsistent set of cell distributions for the kidney.

Table S1 Heterogeneity of cell types in different organs and the corresponding the Shannon-Wiener Index (*SWI*), in bits, and the effective number of cell types, known as the diversity index ($DI=2^{SWI}$)

# of cell types, N	Cell type	%	Shannon- Wiener Index, <i>SWI</i>	Diversity Index, <i>DI</i>	<i>P_i</i> =1/ <i>N</i> for uniform distribution of <i>N</i> cell types	<i>SWI</i> for uniform cell- type distribution
3	<i>a</i> !!	44.04				
)* 4	Glia	41%				
	Neurons	33%				
	Vascular	17%				
_	Microglia	8%	_			
	Total	100%	1.8	3.4	0.25	2.0
5	Cardiomyocytes	55%				
	Fibroblasts	25%				
	Vascular smooth muscle	10%				
	Endothelial	7%				
	Neuronal	3%				
_	Total	100%	1.7	3.3	0.20	2.3
4	Hepatocyte Sinusoidal endothelial Kupffer Hepatic stellate	60% 20% 15% 5%	_			
	Total	100%	1.5	2.9	0.25	2.0
5	Endothelial Interstitial Type II epithelial Type I epithelial Alveolar macrophages Total	39% 29% 18% 11% 3% 100%	2.0	4.0	0.20	2.3
6	Erythrocytes Neutrophils Lymphocytes Monocytes Eosinophils Basophils Total	99% 0.50% 0.30% 0.050% 0.025% 0.007% 99.9%	- 0.1	0.1	0.20	2.3
		# of cell types, N Cell type N Cell type 3 4 Glia Neurons Vascular Microglia 3 4 Glia Neurons 3 5 Cardiomyocytes Fibroblasts 5 Cardiomyocytes Fibroblasts 5 Cardiomyocytes Fibroblasts Vascular smooth muscle Endothelial Neuronal 1 Total 4 Hepatocyte Sinusoidal endothelial Kupffer Hepatic stellate 5 Endothelial Type II epithelial Type I epithelial Type I epithelial Alveolar macrophages 6 Erythrocytes Neutrophils Lymphocytes Monocytes Eosinophils Basophils	# of cell types, N Cell type % 3 4 Glia 41% Neurons 33% Vascular 17% Microglia 8% 170tal 100% 5 Cardiomyocytes 55% Fibroblasts 25% Vascular smooth muscle 10% Endothelial 7% Neuronal 3% Total 100% Endothelial 7% Meuronal 3% Total 100% 4 Hepatocyte 60% Sinusoidal endothelial 20% Kupffer 15% Hepatic stellate 5% 7 Endothelial 39% Total 100% 7 Endothelial 39% Total 100% 7 Endothelial 39% Total 100% 7 Interstitial 29% S% Type I epithelial 11% Alveolar macrophages 3% Total 100% Eosinophils 0.50% Lymphocytes 0.	# of cell types,Wiener Index, MNCell type% 3^3 4Glia $4^1\%$ Neurons33% Vascular 17% Microglia8%Total100%1.85Cardiomyocytes5StationFibroblasts25% Vascular smooth muscle100%1.74Hepatocyte60% Sinusoidal endothelial20% Kupffer7Total100%1.55Endothelial20% Kupffer20% Kupffer100%1.55Endothelial39% Type II epithelial18% Type I epithelial7Interstitial Alveolar macrophages7Total100%2.06Erythrocytes Poyme Neutrophils0.50% Lymphocytes0.30% NoncocytesMonocytes Eosinophils0.007% 0.17Total99.9%0.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	# of cell types, NPi =1/N for uniform distribution of N cell typesNCell type%SWIDiversity Index, DI $P_i =1/N$ for uniform distribution of N cell 3^3 4Glia41% Neurons33% Vascular17% Microglia8%

a Vanderbilt Institute for Integrative Biosystems Research and Education, Nashville, TN 37235, USA. E-mail: john.wikswo@vanderbilt.edu

b Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA

c Department of Molecular Physiology & Biophysics and Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235, USA

Scaling Spreadsheet

The following pages contain a PDF of **Table S1. Structural and functional parameters to guide the scaling of organs-on-chips and human organ constructs based upon human and animal data.** This is in the form of a spread sheet, with ~250 parameters from brain, heart, kidney, liver, lung and blood that are useful in designing coupled organs on a chip. The user is urged to validate all numbers from the primary references therein and report any discrepancies to the authors. A live version of the spread sheet can be downloaded from http://www.vanderbilt.edu/viibre/organs-on-a-chip.php. There is a moderated section for comments on and additions to the table.

References

- 1. L. Jost, Oikos, 2006, 113, 363.
- 2. C. J. Keylock, Oikos, 2005, 109, 203.
- 3. L. Lyck, I. D. Santamaria, B. Pakkenberg, J. Chemnitz, H. D. Schroder, B. Finsen, and H. J. G. Gundersen, *J.Neurosci.Methods*, 2009, 182, 143.
- 4. I. Banerjee, J. W. Fuseler, R. L. Price, T. K. Borg, and T. A. Baudino, Am.J.Physiol. Heart, 2007, 293, H1883.
- 5. D. L. Brutsaert, Physiol. Rev., 2003, 83, 59.
- 6. D. E. Malarkey, K. Johnson, L. Ryan, G. Boorman, and R. R. Maronpot, Toxicologic Pathology, 2005, 33, 27.
- 7. K. C. Stone, R. R. Mercer, P. Gehr, B. Stockstill, and J. D. Crapo, Am.J.Respir.Cell Mol.Biol., 1992, 6, 235.
- 8. L. Sherwood, in Human physiology: from cells to systems, Cengage-Brooks/Cole, Belmont, CA, 7th ed., 2010.

Table S1. 3 Version: 6	Structural and 1 (10/2013	functional parameters to guide the scaling of	f organs-on-chips	and human org	jan construct	s based up	oon human a	nd animal data. The user is urged to valida	ate all number	s from the prima	ry references	s cited and re	eport any discre	pancies to joi	nn.wikswo@v	/anderbilt.ed	u		
A live vers	ion of the spre	ead sheet can be downloaded from http://www	w.vanderbilt.edu/v	/iibre/organs-on	i-a-chip.php .	There is a	moderated s	ection for comments on and additions to	the table.	mHu mass,	7.00E-02	Mouse	2 005-02	uH mass,	7.005-05	nH mass,	7.00E-08	< <enter< th=""><th></th></enter<>	
Organ	Type of Quantity	Quantity	Base unit	Allometric coefficient A	Allometric power B	+/- SE	Allometric Reference Unit	Notes	Human (Hu)	kg ± SE	mHu Allometric	mass, kg mHu Functional	Mouse ±	kg SE	uH Allometric	uH Functional	nH Allometric	nH Functional	References
Brain																			
Brain	Structural	Organ volume	L	0.029	0.922			Scaled to body mass. Brain Mass and volume scale linearally	1.45E+00		2.50E-03	1.45E-03			4.28E-06	1.45E-06	7.34E-09	1.45E-09	1
Brain	Structural	Intracranial Volume	mm^3					Total volume of gray matter+White matter+cerebrospinal fluid	1.50E+06	0.15	N/A	1.50E+03			N/A	1.50E+00	N/A	1.50E-03	2
Brain	Structural	Gray Matter V	cm^3					gray matter mass=volume (cm^3)	5.72E+02		N/A	5.72E-01			N/A	5.72E-04	N/A	5.72E-07	
Brain	Structural	White Matter V	cm^3	1	1.23			Scaled to gray matter volume	2.46E+03		N/A	2.46E+00			N/A	2.46E-03	N/A	2.46E-06	3
Brain	Structural	White Matter V	cm^2	1	1.243	+/- 0.03	6	White matter surface area is used to derive White Matter Volume	2.69E+03		N/A	2.69E+00			N/A	2.69E-03	N/A	2.69E-06	3
Brain	Structural	Interstitial Volume	uL					Extracellular space is 200ul/g tissue LHH ref 28	3.02E+05		N/A	3.02E+02			N/A	3.02E-01	N/A	3.02E-04	4
Brain	Structural	Organ Mass (primates)	g	0.029	0.922			Scaled to body mass	1.51E+03	299.14	2.50E+00	1.51E+00	4.16E-01		4.28E-03	1.51E-03	7.34E-06	1.51E-06	1;5
Brain	Structural	Cerebellum Mass	g						1.54E+02	19.29	N/A	1.54E-01	5.60E-02		N/A	1.54E-04	N/A	1.54E-07	5
Brain	Structural	Rest of Brain Mass	g					Scaled to # gray matter neurons. Mass	1.18E+02	45.42	N/A	1.18E-01			N/A	1.18E-04	N/A	1.18E-07	5
Brain	Structural	Whole Cortical Mass	g	1.05E-08	1.097	+/- 0.08	1	from LHH Ref 2.	1.23E+03	233.68	N/A	6.31E-01	1.73E-01		N/A	3.23E-04	N/A	1.65E-07	3;5
Brain	Structural	Cortical White Matter Mass	g	4.35E-10	1.197	+/- 0.09	1	Scaled to # gray matter neurons. >40% of cerebral cortex in humans, mass of one hemisphere from LHH Ref 2.	5.23E+02	119.7	N/A	1.34E-01			N/A	3.44E-05	N/A	8.81E-09	3
Brain	Structural	Cortical White Matter Mass	g	3.88E-09	1.032	+/- 0.0	4	Scaled to # of cortical non-neuronal cells. Other cells are primarily oligodendrocytes	5.23E+02	119.7	N/A	4.19E-01			N/A	3.36E-04	N/A	2.69E-07	3
Brain	Structural	Cortical White Matter Mass	q	0.3572094	1.148			Scaled to gray matter mass	5.23E+02	119.7	0.00E+00	1.34E-01			6.43E-14	1.71E-14	2.00E-17	2.69E-18	3
Brain	Structural	Cortical Grav Matter mass	a	2.25E-09	1.043	+/- 0.07	3	Scaled to whole brain # neuronal cells.	5.72E+02	105.32	0.00E+00	4.25E-01			7.92E-12	2.50E-12	6.97E-15	1.22E-15	3:5
Brain	Structural	Cortical Surface A	cm^2	1.43E+00	1.059			Mass from LHH Ref 2.	3 33E+03		3 77E+00	2 21E+00			4.44E-03	1.47E-03	5.23E-06	9 79E-07	6
Brain	Structural	White Matter Surface A	cm^2	8.88E-07	0.873	+/- 0.10	2	Scaled to # gray matter neurons	5.74E+02		0.00E+00	1.38E+00			2.96E-09	3.32E-03	1.10E-11	7.98E-06	3
Brain	Structural	Capillary Linear Dimension	um					per neuron	4.60E+01		N/A	4.60E+01			N/A	4.60E+01	N/A	4.60E+01	7
Brain	Structural	Capillary Length Per Neuron (Calculated)	um/neuron					Calculated from total capillary length	7.55E+00		N/A	7.55E+00			N/A	7.55E+00	N/A	7.55E+00	
Brain	Structural	Capillary Luminal Diameter	um					divided by number of neurons	3.00E+00		N/A	3.00E+00			N/A	3.00E+00	N/A	3.00E+00	8
Brain	Structural	Total Capillary Length	km					Calculated by length/neuron*# neurons	6.50E+02		N/A	6.50E-01			N/A	6.50E-04	N/A	6.50E-07	8
Brain	Structural	Capillary Volume (resident blood vol)	mL					From LHH source 13	1.00E+00		N/A	1.00E-03			N/A	1.00E-06	N/A	1.00E-09	8
Brain	Structural	Capillary Volume (calculated)	mL					Calculated from diameter and length 131 um^3/neuron X Whole Brain #	4.59E+00		N/A	4.59E-03			N/A	4.59E-06	N/A	4.59E-09	9
Brain	Structural	Total Capillary Volume	uL					Neuronal Cells	1.13E+04	1.06E+03	0.00E+00	1.13E+01			0.00E+00	1.13E-02	1.34E-03	1.13E-05	2
Brain	Structural	Cerebrospinal fluid volume	mL						1.60E+02		N/A	1.60E-01				1.60E-04		1.60E-07	10
Brain	Structural	Capillary Surface Area	cm^2/g					Average of total capillary surface area	1.75E+02	25	N/A	1.75E+02			N/A	1.75E+02	N/A	1.75E+02	4;8;11
Brain Brain	Structural	Capillary Surface Area Total Capillary Surface Area	m^2 um^2					range from multiple sources 12-18 m ² 174 um ² per neuron X Whole Brain #	1.50E+01 1.50E+13	3	N/A 0.00E+00	1.50E-02 1.50E+10			N/A 0.00E+00	1.50E-05 1.50E+07	N/A 1.77E+06	1.50E-08 1.50E+04	4;8;11
								Reproved the second sec											
Brain	Structural	Axonal Cross Sectional Area	um^2	3.69E-01	0.032	+/- 0.04	9	Scaled to cortical gray matter # neurons	7.85E-01		0.00E+00	7.58E-01			3.00E-01	7.58E-01	2.44E-01	7.58E-01	3;12
Brain	Structural	Axonal Length	mm		0.662	+/- 0.18	6	Scaled to cortical radius	NV		N/A	NV			N/A	NV	N/A	NV	3
Brain	Structural	Axonal Length	mm		0.242	+/- 0.08	5	Scaled to cortical gray matter # neurons	NV		N/A	NV			N/A	NV	N/A	NV	3
Brain	Structural	mitochondrial surface area			0.86			Follows metabolic rate and scales to brain mass											
Brain	Structural	Total cell number	cells					indo	1.70E+11	1.39E+10	0.00E+00	1.70E+08			0.00E+00	1.70E+05	1.06E+04	1.70E+02	1
Brain	Structural	Whole Brain # Neuronal Cells	cells	5.49E+06	0.801			Scaled to body mass	8.61E+10	8.12E+09	0.00E+00	8.61E+07			0.00E+00	8.61E+04	1.02E+04	8.61E+01	1;5
Brain	Structural	Whole Brain # Non-Neuronal Cells	cells	5.49E+06	1			Scaled to body mass	8.46E+10	9.83E+09	0.00E+00	8.46E+07			0.00E+00	8.46E+04	3.84E+02	8.46E+01	1;5
Brain	Structural	Cerebellum # cells	cells						9.83E-01 8.51E+10	6.92F+09	N/A N/A	9.83E-01 8.51E+07			N/A N/A	9.83E-01 8.51E+04	N/A N/A	9.83E-01 8.51E+01	5
Brain	Structural	Cerebellum # Neurons	cells						6.90E+10	6.65E+09	N/A	6.90E+07	4.20E+07		N/A	6.90E+04	N/A	6.90E+01	5
Brain	Structural	Cerebellum # Non-Neuronal	cells						1.60E+10	2.17E+09	N/A	1.60E+07			N/A	1.60E+04	N/A	1.60E+01	5
Brain	Structural	Cerebellum: #Non-Neuronal/#Neuronal							2.32E-01	7 705 . 00	N/A	2.32E-01			N/A	2.32E-01	N/A	2.32E-01	-
Brain	Structural	Cerebral Cortex # cells Cerebral Cortex # Neurops	cells						1.63E+10	7.72E+09 2.17E+09	N/A N/A	1.63E+07	1.30E+07		N/A N/A	1.63E+04	N/A N/A	7.72E+01 1.63E+01	5
Brain	Structural	Cerebral Cortex #Non-Neuronal	cells						6.08E+10	7.02E+09	N/A	6.08E+07			N/A	6.08E+04	N/A	6.08E+01	5
Brain	Structural	Cerebral Cortex: #Non-Neuronal/#Neuronal							3.72E+00		N/A	3.72E+00			N/A	3.72E+00	N/A	3.72E+00	
Brain	Structural	Cortical Grey matter # Neurons	cells	1.89E+07	0.911			Scaled to cortical mass	1.24E+10	3.44E+09	0.00E+00	1.24E+07			1.45E-03	1.24E+04	2.40E-06	1.24E+01	5
Brain	Structural	Cortical Grey matter # Non-Neuronal	cells						1.74E+10	1.56E+09	N/A	1.74E+07			N/A	1.74E+04	N/A	1.74E+01	5
Brain	Structural	Cortical Gray Matter: #Non- Neuronal/#Neuronal							1.40E+00		N/A	1.40E+00			N/A	1.40E+00	N/A	1.40E+00	
Brain	Structural	Cortical White Matter # Neurons	cells						2.58E+09	1.08E+09	N/A	2.58E+06			N/A	2.58E+03	N/A	2.58E+00	5

Brain	Structural	Cortical White Matter # Non-Neuronal	cells	6.95E-02	1.165	+/-	0.07	Scaled to cortical gray matter # neurons	3.98E+10	5.66E+09	0.00E+00	3.98E+07		3.44E-05	3.98E+04	1.97E-08	3.98E+01	5
		Cortical White Matter: #Non-							1.54E+01		N/A	1.54E+01		N/A	1.54E+01	N/A	1.54E+01	
Brain	Structural	Neuronal/#Neuronal Rest of Brain # Cells	cells						8.42F+09	1.50E+09	N/A	8.42F+06		N/A	8.42F+03	N/A	8.42F+00	5
Brain	Structural	Rest of Brain # Neurons	cells					<1% total cells	6.90E+08	1.20E+08	N/A	6.90E+05		N/A	6.90E+02	N/A	6.90E-01	5
Brain	Structural	Rest of Brain # Non-Neuronal	cells					RoB = Basal ganglia, diencephalon,	7.73E+09	1.45E+09	N/A	7.73E+06		N/A	7.73E+03	N/A	7.73E+00	5
Brain	Structural	Rest of Brain: #Non-Neuronal/#Neuronal						brainstern	1.12E+01		N/A	1.12E+01		N/A	1.12E+01	N/A	1.12E+01	
Brain	Structural	Neocortical # Cells	cells						3.87E+10		N/A	3.87E+07		N/A	3.87E+04	N/A	3.87E+01	13
Brain	Structural	Neocortical # Neurons	cells						1.67E+10		N/A	1.67E+07		N/A	1.67E+04	N/A	1.67E+01	13
Brain	Structural	Neocortical # Glia Neocortical: # Glia/# Neurons	Cells						1.92E+10 1.15E+00		N/A N/A	1.92E+07 1.15E+00		N/A N/A	1.92E+04 1.15E+00	N/A N/A	1.92E+01 1.15E+00	13
Brain	Structural	Neocortical # Vascular Cells	cells						7.73E+09		N/A	7.73E+06		N/A	7.73E+03	N/A	7.73E+00	13
Brain	Structural	Neocortical # Microglia	cells						3.48E+09		N/A	3.48E+06		N/A	3.48E+03	N/A	3.48E+00	13
Brain	Functional	Cell Turnover	%					Scales with Age	1.00E+01									9
Brain	Functional	Cerebral Blood Flow	L/min					13% of total body blood flow Agrees with cerebral blood flow in L/min	7.00E-01		N/A	7.00E-04		N/A	7.00E-07	N/A	7.00E-10	14
Brain	Functional	Cerebral Blood Flow	mL/100g.min					when calculated with brain mass	5.27E+01		N/A	5.27E+01		N/A	5.27E+01	N/A	5.27E+01	15
Brain	Functional	CBF changes with aging						linear regression with age, slope =	-1.18E-01	0.043	N/A	N/A		N/A	N/A	N/A	N/A	16
Brain	Functional	Capillary Shear Stress	Pa	57.13	-1.5779			0.28 (venules). Scaled to capillary	1.54E+00			1.54E+00		N/A	1.54E+00	N/A	1.54E+00	17:18
								diameter										
Brain	Functional	Mean Arterial Blood Pressure	mmHg						8.20E+01		N/A	8.20E+01		N/A	8.20E+01	N/A	8.20E+01	15
Brain	Functional	Arteriovenous Oxygen Difference	volume %						6.10E+00		N/A	6.10E+00		N/A	6.10E+00	N/A	6.10E+00	15
Brain	Functional	Oxygen extraction fraction changes with						l inear regression with age slope =	1.00E-03		N/A	N/A		N/A	N/A	N/A	Ν/Δ	
Brain	Functional	aging	volume %					Ellear regression with age, slope –	4.755+01		N/A	4 755 101		N/A	4 755 101	N/A	4 755 101	15
Brain	Functional	CO2 Partial Pressure	mmHa						3.71E+01		N/A N/A	4.75E+01 3.71E+01		N/A N/A	4.75E+01 3.71E+01	N/A	4.75E+01 3.71E+01	19
			5					Decreased connectivity as the cortex										
Brain	Functional	Conduction Velocity	s^_1		0 242	+/-	0.085	grows. This decreases the average	NV		N/A	NV		N/A	NIV	N/A	NV	3
Drain	1 uncuonai	Conduction velocity	3 -1		0.242	1/-	0.005	connections. Scaled to cortical gray matter	140		10/4	INV.		19/75	INV.	19/2	140	5
								# neurons										
Brain	Functional	Conduction Velocity Primates			0.165			Scaled to cortical gray matter # neurons	NV		N/A	NV		N/A	NV	N/A	NV	3
Brain	Functional	Conduction Velocity Rodents			0.466			Scaled to cortical gray matter # neurons	NV		N/A	NV		N/A	NV	N/A	NV	20
Brain	Functional	Computational Capacity Primates			0.623			Scaled to cortical gray matter # neurons	NV		N/A	NV		N/A	NV	N/A	NV	20
Brain	Functional	Computational capacity Rodents			0.446			Scaled to cortical gray matter # neurons	NV		N/A	NV		N/A	NV	N/A	NV	20
Brain	Structural	Non-Neuronal (Glial) cell density per Neuron			1			Scaled to whole brain # neuronal cells.	NV		N/A	NV		N/A	NV	N/A	NV	21
Brain	Structural	Neuronal Cell Density (Primates)	Neurons/mg		-0.123			Average of two papers +/- Stdev. Scaled	NV		N/A	NV		N/A	NV	N/A	NV	21
Brain	Structural	Neuronal Cell Density (Rodents)			-0.367			Scaled to brain mass	NV		N/A	NV		N/A	NV	N/A	NV	21
Brain	Structural	neuronal density with brain mass (all)			-0.172			Scaled to brain mass	NV		N/A	NV		N/A	NV	N/A	NV	21
Brain	Functional	metabolic demand/value range	Metabolic Rate/g		-0.14			Scaled to brain mass	NV		N/A	NV		N/A	NV	N/A	NV	21
Brain	Functional	Whole Brain Glucose Consumption	umol/min	0.785329379	0.873			Across 6 species. Scaled to brain mass	4.68E+02		1.75E+00	2.05E-01	3.70E-01	6.72E-03	2.05E+02	2.59E-05	2.05E+05	21
Brain	Functional	Glucose consumption per mass	umol/g.min	0.785329547	-0.127			Across 6 species. Scaled to brain mass	3.10E-01		6.99E-01	3.10E-01	8.90E-01	1.57E+00	3.10E-01	3.52E+00	3.10E-01	21
	Functional	Glucose per neuron	umol/min		1			Calculated from whole brain glucose consumption divided by number of	5.44F-09			5.44F-09			5.44E-09		5.44E-09	
	1 difetional	Glacose per neuron	unormin					neurons	0.442-00			0.442-00			0.442-00		0.442-00	
Brain	Functional	Whole Brain Oxygen Consumption	ml /min	0 002281743	0.862			Across 6 species, human number average	5.07E+01	21	2.03E-01	5 28E-02	1 905-01	8 39E-04	5 28E-05	2 59E-05	8 85E-07	10.21
Drain	1 difetional	whole Brain Oxygen Consumption	merinin	0.032201140	0.002			mass.	0.07E101	2.1	2.000-01	0.202-02	1.502-01	0.002-04	0.202-00	2.002-00	0.002-01	10,21
Brain	Functional	Whole Brain Oxygen Consumption	ml /a min					For humans, calculated from whole brain	3 505 02	0.005	9 13E 02	3 505 02	0.084 (rat)	1.065.01	3 505 02	3.52E±00	3 505 02	10
Stail	i unotional	Whole Brain Oxygen Consultpillon						mass	0.002-02	0.000	0.102-02	0.00L=02	5.504 (raty	1.000-01	0.00L-02	0.02L100	0.00L-02	10
Brain	Functional	Cerebral Cortex Glucose Consumption	umol/g.min						3.40E-01	0.05	N/A	3.40E-01	1.10E+00	N/A	3.40E-01	N/A	3.40E-01	10
Brain	Functional	CMRO2 changes with aging	mL/100g.min					l inear regression with age slope =	3.21E+00	0.05	N/A	3.21E+00		N/A	3.21E+00	N/A	3.21E+00	15 16
Brain	Functional	Eiring Data			0 1F			Also differs for type of neuron. Scaled to	1 40 47	0.00		1 40 4-			1 40 년~		1 40 ല~	10
bidili	Functional	Filling Rate			-0.15			body mass	1-40 HZ			1-40 HZ			1-40 HZ		1-40 HZ	10
Heart	Structural	Organ Weight	q	5.05E+00	0.98			w/o blood	2.55E+02 ±	£ 2.40E+01	3.73E-01	2.55E-01	1.50E-01 ± 5.00E-02	4.28E-04	2.55E-04	4.92E-07	2.55E-07	22;23
Heart	Structural	Organ Volume	Ĺ	4.21E-03	1.00				2.95E-01	1.50E-02	2.95E-04	2.95E-04	9.50E-05	2.95E-07	2.95E-07	2.95E-10	2.95E-13	14
Heart	Structural	Organ Mean Linear Dimension	cm	3.25E+00	0.33				13.5	1.5	1.35E+00	1.35E+00	1 cm	1.38E-01	1.35E-01	1.41E-02	1.35E-02	23;24
Heart	Structural	LV Weight	g	3.51E+00	0.98				1.78E+02 ±	£ 4.40E+01	2.59E-01 7.50E-01	1.78E-01 7.50E-01	9.10E-02 ± 2.00E-02 1.50E+00	2.97E-04	1.78E-04	3.41E-07 7.85E-03	1.78E-07	25
Heart	Structural	LV Wall Thickness	cells	3.61E+01	0.33				150	30	1.50E+01	1.50E+01	150 (rat)	1.53E+00	1-2	1.57E-01	1.00E+00	28;29
Heart	Structural	LV Surface Area	cm ²	1.32E+01	0.67			Ranges from 180-260 cm ²	2.23E+02 ±	£ 3.75E+01	2.23E+00	2.23E+00	1.00E+00	2.17E-02	2.17E-02	2.12E-04	2.17E-04	30;31
Heart	Structural	LV Radii	mm	7.73E+00	0.33				3.22E+01 ±	£ 2.25E-01	3.22E+00	3.22E+00	5.15 (rat)	3.29E-01	3.22E-01	3.37E-02	3.22E-02	32
Heart	Structural	LV Radius of Curvature Resident Vascular Plood Values	mm	8.45E+04	3			~10.5 ml /100g of tissue	2.90E+00		2.90E+01	2.90E+01	19.4 (rat) 2 84E-05	2.90E-08	2.90E+02	2.90E-17	2.90E+03	33 34-35
i near	Juuciuidi	INCOLUCITE V docuide DIOOU VOIUTTIE	L.	J.UJE-04	1.00			10.0 IIIL/1009 01 1550C	2.000-02		2.00E-00	2.00E-03	2.04L-0J	2.00E-00	2.00E-08	2.00E-11	2.00E-11	34,33

Heart Heart Heart Heart Heart Heart	Structural Functional Structural Structural Structural Structural	End Diastolic Vlood Volume Perfusion Rate Total Cell Number Mass Per Cell Cell Density Number of Important Cell Types	mL L/ min cells g cells/cm ³ cell types	1.71E+00 9.92E-03 N/A N/A N/A N/A	1.00 0.75 N/A N/A N/A	Using 20,000,000 cells/cm ³ Cardiomyocytes, Fibroblasts, VSMCs,	1.20E+02 2.40E-01 5.90E+09 4.32E-08 2.00E+07 5.00E+00	1.20E-01 1.20 1.35E-03 2.40 5.901 4.32 2.001 5.001	E-01 6.00E-02 E-04 2.80E-04 E+06 2.81E+06 E-08 5.34E-08 E+07 5.80E+07 E+00 5.00E+00	1.20E-04 1.20E- 7.59E-06 2.40E- N/A 5.90E- N/A 4.32E- N/A 2.00E- N/A 1-2	04 1.20E-07 1 07 4.27E-08 2 03 N/A 5 08 N/A 4 07 N/A m N/A 1	.20E-07 36;37 2.40E-10 14 3.60E+00 38 1.32E-08 1000layer 29;39
Heart	Functional	Cell Turnover Rate	new cells (yr ⁻¹)	N/A	N/A	1% turnover at 25, 0.45% turnover at 75 years (calculated assuming 1% turnover)	5.90E+07	N/A 5.9	0E+04 1.41E+01	N/A 5.90E	+01 N/A	5.60E-02 40;41
Heart Heart	Functional Metabolic	Fractional Cell Shortening	um/cell ml O ₂ /100g/min	N/A 4.13E-01	N/A 0.75	,	1.05E+01 1.00E+01 + 3.00E+00	1.050 5.62E-02 1.000	E+01 4.14E+00 E+01 8.30E-01 + 1.20E	N/A 1.05E+	01 N/A 1	.05E+01 27;42;43
Heart	Functional	Total Transport Capacity	mL/min	2.17E+02	0.75		5.25E+03 ± 9.75E+02	2.95E+01 5.25E	E+00 2.00E+01 ± 5.00E	E+00 1.66E-01 5.25E	03 9.34E-04 5	5.25E-06 46;47
Heart	Functional	Ejection Fraction	%				6.25E-01 ± 7.50E-02	6.25	E+01 6.60E+01 ± 4.008	E+00 N/A 6.25E-	01 N/A 6	3.25E-01 37;48
Heart	Functional	Oscillatory Frequency	bpm	2.02E+02	-0.25		6.50E+01	3.93E+02 6.50E	E+01 6.32E+02 ± 5.68	E+01 2.21E+03 6.50E+	01 1.24E+04 6	.50E+01 49
Heart	Functional	Wall Shear Stress	dynes/cm ²	1.66E+01	-0.20	Experimental: -0.2027; Theoretical: -0.375 Human value is average at rest (250 mL	7.00E+00	2.84E+01 7.00E	E+00 3.50E+01	1.15E+02 7.00E+	00 4.67E+02 7	.00E+00 50
Heart	Metabolic	Max O2 Consumption nmol/mm^3/s	nmol/mm^3/s	N/A	N/A	O ₂ min ⁻¹) in children and adults, higher density in	5.55E-01		7.00E-01			22
Heart	Structural	Capillary Density	capiliaries/mm ⁻ 2	N/A	N/A	infants	2.39E+03 ± 7.50E+01		2.25E+03 ± 8.500	E+01		22
Heart	Structural	Myocyte Fractional area	% mL 02/100g/min	N/A	N/A	in mon	1.20E+01 ± 5.90E+00		8.21E+01 ± 9.00	E-01		22
Heart	Structural	% Mitochondria (v/v)	IIIE 02/1009/IIIII	N/A	N/A	% of CM cytosolic volume	2.53E-01		3.80E-01			45
Kidney	oudotardi	, integration and (int)		1071	1073		2.002 01		0.002 01			Kidney
Kidney	Structural	Kidney Mass	g			Mass from literature	3.10E+02		3.20E-01			14
Kidney	Structural	Kidney Mass	g	2.12E-02	0.85	Mass from allometric scaling	2.78E+02	7.85E-01	2.71E-01	2.21E-03	6.23E-06	51-54
Kidney	Structural	Kidney Volume	mL	0.405.00	0.04	Volume from literature	2.80E+02	7 005 04	3.40E-01	0.005.00	0.055.00	14
Kidney	Structural	Cortical Thickness	mm	2.62E+00	0.17	volume from allometric scaling	5.39E+02	1.67E+00	1.35E+00	2.32E-03 5.15E-01	1.59E-01	56
Kidney	Structural	Medullary Thickness	mm	8.15E+00	0.13		1.41E+01	5.78E+00	4.92E+00	2.37E+00	9.73E-01	57
Kidney	Structural	Outer Medullary Thickness	mm	3.17E+00	0.18		6.81E+00	1.96E+00	1.57E+00	5.66E-01	1.63E-01	56
Kidney	Structural	Inner Medullary Thickness	mm	5.09E+00	0.14		9.23E+00	3.51E+00	2.94E+00	1.33E+00	5.07E-01	56
Kidney	Structural	Loop Length	um	1.85E+03	1.02		0.00E+00	0	0	0	0	57
Kidney	Structural	Renal Blood Flow (RBF)	mL/min			Renal Blood Flow from literature	1.24E+03		1.30E+00			14
Kidney	Structural	Renal Blood Flow (RBF)	mL/min	4.31E+01	0.77	Renal Blood Flow from allometric scaling	1.13E+03	5.56E+00	2.12E+00	2.72E-02	1.33E-04	58
Kidney	Structural	Plasma Flow Rate (PFR)	mL/min			Plasma Flow Rate from literature	7.00E+02		8.00E-01			55
Kidney	Structural	Plasma Flow Rate (PFR)	mL/min	8.45E-02	0.80	Plasma Flow Rate from allometric scaling	6.50E+02	2.55E+00	9.34E-01	1.00E-02	3.93E-05	55
Kidney	Structural	# Nephrons, Both Kidneys		1.88E+05	0.62		2.62E+06	3.62E+04	1.66E+04	4.99E+02	6.89E+00	52;53;55
Kidney	Structural	# Giomeruli, Both Kidneys # Nephrons/a of Kidney		3.24E+05	-0.32		2.00E+00 8.32E+03	3.67E+04 7.59E+04	1.09E+04 1.13E+05	5.06E+02 6.92E+05	6.31E+00	59
Kidney	Structural	Glomerular Surface/g of Kidney	mm^2	2.81E+03	-0.15		1.49E+03	4.19E+03	5.05E+03	1.18E+04	3.32E+04	59
Kidney	Structural	Total Glomerular Volume	mL	1.37E-01	0.85		5.07E+00	1.43E-02	4.93E-03	4.03E-05	1.14E-07	53;59
Kidney	Structural	Total Glomerular SA	mm^2	8.37E+03	0.73		1.86E+05	1.20E+03	4.81E+02	7.76E+00	5.01E-02	59
Kidney	Structural	SA/Glomerulus	mm^2	8.60E-02	0.18		1.85E-01	5.33E-02	4.25E-02	1.54E-02	4.43E-03	59
Kidney	Structural	Proximal Tubule Length Provimal Tubule Diameter	mm	1.43E+01 6.00E-02	0.10		2.19E+01 6.53E-02	1.10E+01 5.69E-02	9.09E+00 5.55E-02	5.50E+00 4 96E-02	2.76E+00 4.32E-02	59
Kidney	Structural	Proximal Tubule Volume	mm^3	4.60E-02	0.12		7.66E-02	3.34E-02	2.88E-02	1.46E-02	6.37E-02	59
Kidney	Structural	Total of Proximal Tubule Volumes	mm^3	4.28E+03	0.68		7.70E+04	7.02E+02	3.00E+02	6.40E+00	5.84E-02	59
Kidney	Structural	Proximal Tubule Volume/g of Kidney	mm^3	1.47E+03	-0.20		6.29E+02	2.51E+03	3.22E+03	9.97E+03	3.97E+04	59
Kidney	Structural	Mean Glomerular Diameter	um	6.10E+01	0.11		2.08E+02	9.73E+01	8.48E+01	0.00E+00	2.13E+01	54
Kidney	Functional	Giomerular Filtration Rate (GFR)	mL/min mL/min	5 36E+00	0.72		1.25E+02 1 14E+02	7 90E-01	E-01 2.80E-01 3.21E-01	1.25E- 5.47E-03	3 78E-05	14
Kidney	Functional	Single Nephron GFR	nL/min	2.80E+01	0.10		4.28E+01	2.15E+01	1.89E+01	1.08E+01	5.39E+00	53
Kidney	Functional	Urine Flow	mL/day			Urine Flow from literature	1.40E+03		1.00E+00			14
Kidney	Functional	Urine Flow	mL/day	6.09E+01	0.75	Urine Flow from allometric scaling	1.47E+03	8.28E+00	3.24E+00	4.66E-02	2.62E-04	58
Kidney	Functional	Urinary Concentrating Ability (*#4)	mmol/kgH2O	2.67E+03	-0.10		1.77E+03	3.45E+03	3.90E+03	6.75E+03	1.32E+04	56;57
Kidney	Functional	Clearance	ml /hr	1 505 100	0.75		2 205 101	2.245.01	0.515.00	1 625 02	1 125 05	53
Kidney	Functional	Clearance, Urea	mL/nr ml/min	1.59E+00 5.36E+00	0.72		3.39E+01 1.14E+02	2.34E-01 7 90E-01 1 14	9.51E-02 E-01 3.21E-01	5.47E-03 1.14E	1.12E-05	52;55
Kidney	Functional	Clearance, Creatinine	mL/min	8.20E+00	0.69		1.54E+02	1.31E+00	5.51E-01	1.11E-02	9.48E-05	52;55;61
Kidney	Functional	Clearance, Methotrexate (MTX)	mL/min	1.09E+01	0.69		2.04E+02	1.74E+00	7.33E-01	1.48E-02	1.26E-04	61
Kidney	Functional	Clearance, Para-aminohippurate (PAH)	mL/min	2.18E+01	0.77		5.74E+02	2.81E+00	1.07E+00	1.38E-02	6.75E-05	58
Kidney	Functional	Excretion, Urinary Nitrogen	mg/day	1.46E+02	0.72		3.11E+03	2.15E+01	8.73E+00	1.49E-01	1.03E-03	60
Kidney	Functional	Excretion, Creatinine Nitrogen	mg/day	1.27E+01 6.85E±00	0.90		5./1E+U2 1.59E+02	1.17E+00 9.57E-01	3.82E-01	2.40E-03	4.93E-06 3.48E 05	60
Kidnev	Metabolic	Species Basal Metabolic Rate	W	3.89E+00	0.76		9.82E+01	5.15E-01	1.99E-01	2.71F-03	1.42F-05	57
Kidney	Metabolic	Species Mass Specific Metablic Rate	W/kg	3.89E+00	-0.24		1.40E+00	7.36E+00	9.95E+00	3.86E+01	2.03E+02	57
Kidney	Metabolic	Kidney Mass Specific Metabolic Rate	kJ kg-1 day-1	2.89E+03	-0.08		2.06E+03	3.57E+03	3.95E+03	6.21E+03	1.08E+04	51;62
Kidney	Metabolic	Mass Specific Oxygen Consumption			-0.10							63
Kidney	Metabolic	Mitochondrial Volume Density (% of cell vol)	%	3.80E+01	-0.14		7.96E+00	2.09E+01	2.50E+01	5.51E+01	1.45E+02	64

Kidnev	Metabolic	Mitochondrial Membrane SA (m^2) per cm^3	m^2/cm^3	2.17E+01	-0.22		1.87E+00	8.53E+00	1.12E+01	3.90E+01		1.78E+02	1	64
Kidney	Metabolic	Lissue Vol Mitochondria/mTAL Cell Vol	%	5.62E+01	-0.06		4.43E+01	6.53E+01	7.00F+01	9.61E+01		1.41E+02		63
Kidney	Metabolic	Inner Mitochondial Membrane Area/Vol	umA 1	4 90 5+01	0.03		4.24E±01	5.36E+01	5 50 5 + 01	6 79E±01		9.595+01		62
Kiulley	Wetabolic	mTAL Mito	unren	4.902+01	-0.03		4.2401	5.500+01	5.59E+01	0.700-01		0.000701		05
Kidney	Metabolic	Cell Vol	um^-1	2.75E+01	-0.09		1.86E+01	3.52E+01	3.95E+01	6.64E+01		1.25E+02		63
Kidney	Metabolic	Basolateral Membrane Area/mTAL Cell Vol	um^-1	5.50E+00	-0.08		4.00E+00	6.71E+00	7.38E+00	1.13E+01		1.89E+01		63
Liver														Liver
Liver	Structural	Organ Weight	g	3.70E-02	0.85		1.52E+03	1.36E+00 1.52E+00	1.50E+00	3.87E-03	1.52E-03	1.10E-05	1.52E-06	65
Liver	Structural	Organ Volume	mL				1.69E+03	1.69E+00	1.30E+00		1.69E-03		1.69E-06	14
Liver	Metabolic	Oxygen Consumption	mL/min	3.50E-02	0.69		2.07E+03	6.56E-01 2.07E+00		5.59E-03	4.455.00	4.76E-05	4 455 00	65;67
Liver	Functional	Blood Flow	mL/min	9.40E-02	0.75		1.45E+03	2.27E+00 1.45E+00		1.28E-02	1.45E-03	7.19E-05	1.45E-06	14;65
Liver	Functional	Resident Blood Volume Bile Flow	mL ml/dav	2.50E-02	0.80		3 50E+02	9.00E-01 3.50E-01	2 00E+00	2.54E-03	3 50E-04	0.08E-00	3 50E-07	14
Liver	Structural	Hepatocytes	cells	9.10E+06	0.89		3.00E+11	3.92E+08 3.00E+08	2.002100	8.63E+05	3.00E+05	1.90E+03	3.00E+02	65
Liver	Structural	Hepatocyte Cell Density	cells/g liver				1.39E+08 ± 2.50E+07	1.39E+05	1.35E+02 ± 1.00E+01		1.39E+02		1.39E-01	68
Liver	Functional	Protein Concentration	mg/g liver				9.00E+01 ± 1.70E+01	9.00E-02	1.15E+02 ± 7.00E+00		9.00E-05		9.00E-08	68
Liver	Structural	Liver Density	g liver/mL				1.03E+00	1.03E-03			1.03E-06		1.03E-09	14
Liver	Functional	Potassium Uptake Rate	µmol K+/g wet * min	1.20E+00	-0.14			6.62E-01		1.74E+00		4.58E+00		69
Liver	Metabolic	Tissue Metabolic Bate (Oxygen)	umol O2/a wet * min	3.60E+00	-0.21			1 48E+00		6 29E+00		2 68E+01		69
Liver	Functional	Shor Strop	MDa	0.002.00	0.21	Liver envesid	E 00E 101	E 00E 02		0.202.00		2.002.01	E 00E 08	70
Liver	Functional	CL intrinsic	WFa			Liver sindsold	5.00E+01	5.00E-02			5.00E-05		5.00E-06	70
Liver	Functional	Antipyrine	ml /min	5.00E-02	1.84	Corrected with brain weight	3.43F+02	3.75E-04 3.43E-01		1.13E-09	3.43E-04	3.42E-15	3.43E-07	71
Liver	Functional	Caffeine	mL/min	7.00E-02	1.53	Corrected with brain weight	1.40E+02	1.20E-03 1.40E-01		3.08E-08	1.40E-04	7.91E-13	1.40E-07	71
Liver	Functional	Mibefradil	mL/min	3.63E+01	1.31	Corrected with brain weight	4.90E+02	1.11E+00 4.90E-01		1.31E-04	4.90E-04	1.54E-08	4.90E-07	71
Liver	Functional	Moforotene	mL/min	1.00E+02	1.64	Corrected with brain weight	7.70E+02	1.28E+00 7.70E-01		1.53E-05	7.70E-04	1.84E-10	7.70E-07	71
Liver	Functional	Theophylline	mL/min	3.00E-02	1.71	Corrected with brain weight	4.27E+01	3.18E-04 4.27E-02		2.36E-09	4.27E-05	1.75E-14	4.27E-08	71
Liver	Functional	Tolcapone	mL/min	1.03E+02	1.51	Corrected with brain weight Adjusted from reference weight to 70kg	1.89E+02	1.86E+00 1.89E-01		5.48E-05	1.89E-04	1.62E-09	1.89E-07	71
Liver	Functional	Bromazepam	mL/min			human	6.78E+01							61
Liver	Functional	Clonazepam	mL/min			Adjusted from reference weight to 70kg	4.28E+02							61
Liver	Functional	Chlordiazepoxide	mL/min			Adjusted from reference weight to 70kg	4.46E+02							61
Liver	Functional	Antipyrine	mL/min	8.16E+00	0.89	numan		7.76E-01		1.32E-02		2.91E-05		66
														00
Liver	Functional	Phenytoin	mL/min	4.71E+01	0.92			4.13E+00		4.13E+00		7.44E-03		66
Liver Lung	Functional	Phenytoin	mL/min	4.71E+01	0.92	*averaned values - Reported		4.13E+00	henerove*	4.13E+00		7.44E-03		66 Lung
Liver Lung Lung	Functional Structural	Phenytoin	mL/min	4.71E+01	0.92	*averaged values - Reported		4.13E+00	*averaged	4.13E+00		7.44E-03		66 Lung
Liver Lung Lung Lung	Functional Structural Structural	Phenytoin Total Lung Capacity (TLC)	mL/min mL	4.71E+01 5.35E+01	0.92	*averaged values - Reported 70 kg human .25	5.50E+03 ± 5.00E+02	4.13E+00 3.19E+00 5.50E+00	*averaged 9.50E+00	4.13E+00 2.11E-03	5.50E-03	7.44E-03	5.50E-06	66 Lung 72
Liver Lung Lung Lung	Functional Structural Structural	Phenytoin Total Lung Capacity (TLC)	mL/min mL	4.71E+01 5.35E+01	0.92	*averaged values - Reported 70 kg human .25 kg rat 70 kg	5.50E+03 ± 5.00E+02	4.13E+00 3.19E+00 5.50E+00	*averaged 9.50E+00	4.13E+00 2.11E-03	5.50E-03	7.44E-03	5.50E-06	66 Lung 72
Liver Lung Lung Lung Lung	Functional Structural Structural Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC)	mL/min mL mL	4.71E+01 5.35E+01 2.41E+01	0.92	*averaged values - Reported 70 kg human .25 Kg rat 70 kg human .25	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00	*averaged 9.50E+00 1.50E+00	4.13E+00 2.11E-03 4.86E-04	5.50E-03 3.05E-03	7.44E-03 1.39E-06 1.98E-07	5.50E-06 3.05E-06	66 Lung 72 72
Liver Lung Lung Lung Lung	Functional Structural Structural Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC)	mL/min mL mL	4.71E+01 5.35E+01 2.41E+01	0.92 1.06 1.13	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00	*averaged 9.50E+00 1.50E+00	4.13E+00 2.11E-03 4.86E-04	5.50E-03 3.05E-03	7.44E-03 1.39E-06 1.98E-07	5.50E-06 3.05E-06	66 Lung 72 72
Liver Lung Lung Lung Lung	Structural Structural Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tital Volume	mL/min mL mL	4.71E+01 5.35E+01 2.41E+01	0.92 1.06 1.13	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg buman .25	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01	*averaged 9.50E+00 1.50E+00	4.13E+00 2.11E-03 4.86E-04	5.50E-03 3.05E-03	7.44E-03 1.39E-06 1.98E-07 2.79E-07	5.50E-06 3.05E-06	66 Lung 72 72
Liver Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume	mL/min mL mL mL	4.71E+01 5.35E+01 2.41E+01 7.69E+00	0.92 1.06 1.13 1.04	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg human .25 kg rat	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01	*averaged 9.50E+00 1.50E+00 1.65E+00	4.13E+00 2.11E-03 4.86E-04 3.67E-04	5.50E-03 3.05E-03 4.50E-04	7.44E-03 1.39E-06 1.98E-07 2.79E-07	5.50E-06 3.05E-06 4.50E-07	66 66 72 72 72
Liver Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume	mL/min mL mL mL	4.71E+01 5.35E+01 2.41E+01 7.69E+00	0.92 1.06 1.13 1.04	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg human .25	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01	*averaged 9.50E+00 1.50E+00 1.65E+00	4.13E+00 2.11E-03 4.86E-04 3.67E-04	5.50E-03 3.05E-03 4.50E-04	1.39E-06 1.98E-07 2.79E-07	5.50E-06 3.05E-06 4.50E-07	66 66 72 72 72
Liver Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space	mL/min mL mL mL mL	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00	0.92 1.06 1.13 1.04 0.96	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg human .25 kg rat	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01	*averaged 9.50E+00 1.65E+00 7.90E-01	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04	5.50E-03 3.05E-03 4.50E-04 1.50E-04	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07	5.50E-06 3.05E-06 4.50E-07 1.50E-07	66 67 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space	mL/min mL mL mL mL	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00	0.92 1.06 1.13 1.04 0.96	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04	5.50E-03 3.05E-03 4.50E-04 1.50E-04	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07	5.50E-06 3.05E-06 4.50E-07 1.50E-07	66 <u>Lung</u> 72 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration	mL/min mL mL mL mL min-1	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01	0.92 1.06 1.13 1.04 0.96 -0.26	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg human .25 kg rat 70 kg human .25	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.65E-02	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02	5.50E-03 3.05E-03 4.50E-04 1.50E-04 1.65E-05	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08	66 57 72 72 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration	mL/min mL mL mL mL	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01	0.92 1.06 1.13 1.04 0.96 -0.26	*averaged values - Reported 70 kg human .25 kg rat 70 kg	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02	5.50E-03 3.05E-03 4.50E-04 1.50E-04 1.65E-05	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08	66 67 72 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min)	mL/min mL mL mL mL min-1 mL/min	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02	0.92 1.06 1.13 1.04 0.96 -0.26 0.80	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01	5.50E-03 3.05E-03 4.50E-04 1.50E-04 1.65E-05 6.50E-03	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06	66 66 72 72 72 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min)	mL/min mL mL mL mL min-1	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02	0.92 1.06 1.13 1.04 0.96 -0.26 0.80	*averaged values - Reported 70 kg human .25 kg rat 70 kg	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01	5.50E-03 3.05E-03 4.50E-04 1.50E-04 1.65E-05 6.50E-03	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.79E-07 3.88E+03 7.16E-04	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06	66 67 72 72 72 72 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance	mL/min mL mL mL min-1 mL/min	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05	5.50E-03 3.05E-03 4.50E-04 1.50E-04 1.65E-05 6.50E-03 1.63E-04	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06 1.63E-07	66 67 72 72 72 72 72 72 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Functional Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance	mL/min mL mL mL min-1 mL/min mL/cm H2O	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05	5.50E-03 3.05E-03 4.50E-04 1.50E-04 1.65E-05 6.50E-03 1.63E-04	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06 1.63E-07	66 66 72 72 72 72 72 72 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Functional Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance	mL/min mL mL mL min-1 mL/min mL/cm H2O	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 0.70	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E+01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E 02	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04	5.50E-03 3.05E-03 4.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E.06	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E±06	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E.00	72 72 72 72 72 72 72 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Functional Functional Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance	mL/min mL mL mL min-1 mL/min mL/cm H2O/(L/sec)	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat human .25 kg rat human .25 kg rat human .25 kg rat human .25	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E-03	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04	5.50E-03 3.05E-03 4.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06	5.50E-06 3.05E-06 4.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09	66 67 72 72 72 72 72 72 72 72 72 7
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional Functional Functional Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance	mL/min mL mL mL min-1 mL/min mL/cm H2O cm H2O/(L/sec)	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E-03	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04	5.50E-03 3.05E-03 4.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06	5.50E-06 3.05E-06 4.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09	66 67 72 72 72 72 72 72 72 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional Functional Functional Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance Diffusion Capacity CO	mL/min mL mL mL mL min-1 mL/min mL/cm H2O cm H2O/(L/sec)	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01 2.20E-01	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70 1.14	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .2	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01 3.35E+01 ± 1.65E+01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E-03 1.06E-02 3.35E-02	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01 4.50E-02	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04 4.03E-06	5.50E-03 3.05E-03 4.50E-04 1.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06 3.35E-05	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06 1.53E-09	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09 3.35E-08	66 67 72 72 72 72 72 72 72 72 72 72 72 72 72
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional Functional Functional Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance Diffusion Capacity CO	mL/min mL mL mL min-1 mL/min mL/cm H2O cm H2O/(L/sec) mL/mmHg/min	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01 2.20E-01	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70 1.14	*averaged values - Reported 70 kg human .25 kg rat 70 kg	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01 3.35E+01 ± 1.65E+01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E-03 1.06E-02 3.35E-02	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01 4.50E-02	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04 4.03E-06	5.50E-03 3.05E-03 4.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06 3.35E-05	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06 1.53E-09	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09 3.35E-08	66 Lung 72
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional Functional Functional Functional Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance Diffusion Capacity CO Power of Breathing	mL/min mL mL mL mI mI/min mL/min mL/cm H2O cm H2O/(L/sec) mL/mmHg/min	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01 2.20E-01 9.62E+02	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70 1.14 0.78	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01 3.35E+01 ± 1.65E+01 4.00E+04 ± 1.00E+04	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E-03 1.06E-02 3.35E-02 1.21E+02 4.00E+01	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01 4.50E-02 6.25E+02	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04 4.03E-06 5.53E-01	5.50E-03 3.05E-03 4.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06 3.35E-05 4.00E-02	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06 1.53E-09 2.53E-03	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09 3.35E-08 4.00E-05	72 72 72 72 72 72 72 72 72 72 72 72 72 7
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional Functional Functional Functional	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance Diffusion Capacity CO Power of Breathing	mL/min mL mL mL min-1 mL/min mL/cm H2O cm H2O/(L/sec) mL/mmHg/min g*cm/min	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01 2.20E-01 9.62E+02	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70 1.14 0.78	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01 3.35E+01 ± 1.65E+01 4.00E+04 ± 1.00E+04	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E-03 1.06E-02 3.35E-02 1.21E+02 4.00E+01	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01 4.50E-02 6.25E+02	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04 4.03E-06 5.53E-01	5.50E-03 3.05E-03 4.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06 3.35E-05 4.00E-02	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06 1.53E-09 2.53E-03	5.50E-06 3.05E-06 4.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09 3.35E-08 4.00E-05	66 67 72 72 72 72 72 72 72 72 72 7
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional Functional Functional Functional Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance Diffusion Capacity CO Power of Breathing Organ Weight	mL/min mL mL mL mL min-1 mL/min mL/cm H2O cm H2O/(L/sec) mL/mmHg/min g*cm/min	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01 2.20E-01 9.62E+02 1.13E+01	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70 1.14 0.78 0.99	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .2	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01 3.35E+01 ± 1.65E+01 4.00E+04 ± 1.00E+04 1.00E+03	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.65E-02 1.21E+02 4.00E+01 8.12E-01	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01 4.50E-02 6.25E+02 1.50E+00	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04 4.03E-06 5.53E-01 8.70E-04	5.50E-03 3.05E-03 4.50E-04 1.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06 3.35E-05 4.00E-02 1.00E-02	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06 1.53E-09 2.53E-03 9.33E-07	5.50E-06 3.05E-06 4.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09 3.35E-08 4.00E-05 1.00E-06	72 72 72 72 72 72 72 72 72 72 72 72 72 7
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional Functional Functional Functional Functional Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance Diffusion Capacity CO Power of Breathing Organ Weight	mL/min mL mL mL min-1 mL/min mL/cm H2O cm H2O/(L/sec) mL/mmHg/min g*cm/min	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01 2.20E-01 9.62E+02 1.13E+01	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70 1.14 0.78 0.99	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01 3.35E+01 ± 1.65E+01 4.00E+04 ± 1.00E+04 1.00E+03	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E-03 1.06E-02 3.35E-02 1.21E+02 4.00E+01 8.12E-01 1.20E+01	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01 4.50E-02 6.25E+02 1.50E+00	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04 4.03E-06 5.53E-01 8.70E-04	5.50E-03 3.05E-03 4.50E-04 1.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06 3.35E-05 4.00E-02 1.00E-03	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06 1.53E-09 2.53E-03 9.33E-07	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09 3.35E-08 4.00E-05 1.00E-06	72 72 72 72 72 72 72 72 72 72 72 72 72 7
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Functional Functional Functional Functional Functional Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance Diffusion Capacity CO Power of Breathing Organ Weight	mL/min mL mL mL min-1 mL/min mL/cm H2O cm H2O/(L/sec) mL/mmHg/min g*cm/min	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01 2.20E-01 9.62E+02 1.13E+01 4.20E-02	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70 1.14 0.78 0.99 0.17	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .2	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01 3.35E+01 ± 1.65E+01 4.00E+04 ± 1.00E+04 1.00E+03 2.86E-01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E-03 1.06E-02 3.35E-02 1.21E+02 4.00E+01 8.12E-01 2.66E-02 2.86E.04	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01 4.50E-02 6.25E+02 1.50E+00 7.40E-02	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04 4.03E-06 5.53E-01 8.70E-04 8.10E-03	5.50E-03 3.05E-03 4.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06 3.35E-05 4.00E-02 1.00E-03 2.86E-07	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06 1.53E-09 2.53E-03 9.33E-07 2.47E-02	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09 3.35E-08 4.00E-05 1.00E-06 2.86E-10	72 72 72 72 72 72 72 72 72 72 72 72 72 7
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Functional Functional Functional Functional Structural Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance Diffusion Capacity CO Power of Breathing Organ Weight Acinar Diameter	mL/min mL mL mL min-1 mL/min mL/mmH2O cm H2O/(L/sec) g*cm/min g*cm/min	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01 2.20E-01 9.62E+02 1.13E+01 4.20E-02	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70 1.14 0.78 0.99 0.17	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .25 kg rat	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01 3.35E+01 ± 1.65E+01 4.00E+04 ± 1.00E+04 1.00E+03 2.86E-01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E-03 1.06E-02 3.35E-02 1.21E+02 4.00E+01 8.12E-01 2.86E-04	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01 4.50E-02 6.25E+02 1.50E+00 7.40E-02	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04 4.03E-06 5.53E-01 8.70E-04 8.10E-03	5.50E-03 3.05E-03 4.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06 3.35E-05 4.00E-02 1.00E-02 2.86E-07	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06 1.53E-09 2.53E-03 9.33E-07 2.47E-03	5.50E-06 3.05E-06 4.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09 3.35E-08 4.00E-05 1.00E-06 2.86E-10	72 72 72 72 72 72 72 72 72 72 72 72 72 7
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional Functional Functional Functional Structural Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance Diffusion Capacity CO Power of Breathing Organ Weight Acinar Diameter	mL/min mL mL mL min-1 mL/min mL/cm H2O cm H2O/(L/sec) mL/mmHg/min g*cm/min	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01 2.20E-01 9.62E+02 1.13E+01 4.20E-02	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70 1.14 0.78 0.99 0.17 2.01	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .2	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 1.65E+01 4.00E+04 ± 1.00E+04 1.00E+03 2.86E-01	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.21E+02 4.00E+01 8.12E-01 2.66E-02 2.86E-04 2.07E-02 4.62E-04	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01 4.50E-02 6.25E+02 1.50E+00 7.40E-02	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04 4.03E-06 5.53E-01 8.70E-04 8.70E-04 8.10E-03	5.50E-03 3.05E-03 4.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06 3.35E-05 4.00E-02 1.00E-02 1.00E-03 2.86E-07	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06 1.53E-09 2.53E-03 9.33E-07 2.47E-03 4.000 2.52	5.50E-06 3.05E-06 4.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09 3.35E-08 4.00E-05 1.00E-06 2.86E-10	72 72 72 72 72 72 72 72 72 72 72 72 72 7
Liver Lung Lung Lung Lung Lung Lung Lung Lung	Functional Structural Structural Structural Structural Structural Functional Functional Functional Functional Structural Structural	Phenytoin Total Lung Capacity (TLC) Functional Residual Capacity (FRC) Tidal Volume Dead Space Frequency of Respiration Minute Volume (ml/min) Lung Compliance Flow Resistance Diffusion Capacity CO Power of Breathing Organ Weight Acinar Diameter	mL/min mL mL mL mL min-1 mL/min mL/cm H2O cm H2O/(L/sec) g*cm/min g cm cm	4.71E+01 5.35E+01 2.41E+01 7.69E+00 2.76E+00 5.35E+01 3.79E+02 2.10E+00 2.44E+01 2.20E-01 9.62E+02 1.13E+01 4.20E-02 5.20E-03	0.92 1.06 1.13 1.04 0.96 -0.26 0.80 1.08 -0.70 1.14 0.78 0.99 0.17 0.21	*averaged values - Reported 70 kg human .25 kg rat 70 kg human .2	5.50E+03 ± 5.00E+02 3.05E+03 ± 6.50E+02 4.50E+02 ± 5.00E+01 1.50E+02 ± 0.00E+00 1.65E+01 ± 5.50E+00 6.50E+03 ± 5.00E+02 1.63E+02 ± 3.75E+01 1.40E+00 ± 5.00E-01 3.35E+01 ± 1.65E+01 4.00E+04 ± 1.00E+04 1.00E+03 2.86E-01 4.40E-02	4.13E+00 3.19E+00 5.50E+00 1.19E+00 3.05E+00 4.84E-01 4.50E-01 2.15E-01 1.50E-01 1.07E+02 1.65E-02 4.52E+01 6.50E+00 1.19E-01 1.63E-01 1.57E+02 1.40E-03 1.06E-02 3.35E-02 1.21E+02 4.00E+01 8.12E-01 2.86E-04 2.97E-03 4.40E-05	*averaged 9.50E+00 1.50E+00 1.65E+00 7.90E-01 1.06E+02 2.00E-01 4.50E-01 9.50E+01 4.50E-02 6.25E+02 1.50E+00 7.40E-02 4.10E-03	4.13E+00 2.11E-03 4.86E-04 3.67E-04 2.83E-04 6.44E+02 1.80E-01 6.84E-05 1.98E+04 4.03E-06 5.53E-01 8.70E-04 8.10E-03 6.97E-04	5.50E-03 3.05E-03 4.50E-04 1.50E-04 1.65E-05 6.50E-03 1.63E-04 1.40E-06 3.35E-05 4.00E-02 1.00E-03 2.86E-07 4.40E-08	7.44E-03 1.39E-06 1.98E-07 2.79E-07 3.73E-07 3.88E+03 7.16E-04 3.93E-08 2.49E+06 1.53E-09 2.53E-03 9.33E-07 2.47E-03 1.63E-04	5.50E-06 3.05E-06 4.50E-07 1.50E-07 1.65E-08 6.50E-06 1.63E-07 1.40E-09 3.35E-08 4.00E-05 1.00E-06 2.86E-10 4.40E-11	66 67 72 72 72 72 72 72 72 72 72 7

Lung	Structural	Alveolar Diameter	cm	3.10E-03	0.15	70 kg human .25 kg rat	1.82E-02	2.07E-03 1.82E-05	4.48E-03	7.31E-04 1.82E-08	2.58E-04 1.82E-11	73
Lung	Structural	Surface Area Alveolar Epithelium	m²		х	70 kg human, 20 g mouse	1.02E+02 ± 2.05E+01	1.02E-01	5.00E-02 ± 2.00E-02	1.02E-04	1.02E-07	74
Lung	Structural	Surface Area Type 1 Epithelium	m²		х	70 kg human, 20 g mouse	9.60E+01 ± 1.91E+01	9.60E-02	5.00E-02 ± 2.00E-02	9.60E-05	9.60E-08	74
Lung	Structural	Surface Area Type 2 Epithelium	m²		x	70 kg human, 20 g mouse	6.20E+00 ± 1.50E+00	6.20E-03	1.00E-03 ± 2.00E-04	6.20E-06	6.20E-09	74
Lung	Structural	Capillary Endothelium	m²		х	70 kg human, 20 g mouse	7.23E+01 ± 1.65E+01	7.23E-02	4.00E-02 ± 1.00E-02	7.23E-05	7.23E-08	74
Lung	Structural	Total Alveolar Septal Tissue Volume	cm ³		х	70 kg human, 20 g mouse	2.30E+02 ± 3.80E+01	2.30E-01	6.30E-02 ± 1.20E-02	2.30E-04	1.02E-07	74
Lung	Structural	Type 1 Cell Volume	cm ³		x	70 kg human, 20 g mouse	3.39E+01 ± 3.39E+01	3.39E-02	1.40E-02 ± 3.00E-03	3.39E-05	9.60E-08	74
Lung	Structural	Type 2 Cell Volume	cm ³		x	70 kg human, 20 g mouse	2.23E+01 ± 2.23E+01	2.23E-02	5.00E-03 ± 1.00E-03	2.23E-05	6.20E-09	74
Lung	Structural	Interstitial Cell Volume	cm ³		х	70 kg human, 20 g mouse	3.84E+01 ± 3.84E+01	3.84E-02	1.30E-02 ± 4.00E-03	3.84E-05	7.23E-08	74
Lung	Structural	Interstitial Matrix Volume	cm ³		x	70 kg human, 20 g mouse	8.55E+01 ± 1.06E+01	8.55E-02	7.00E-03 ± 2.00E-03	8.55E-05	2.30E-07	74
Lung	Structural	Endothelial Cell Volume	cm ³		х	70 kg human, 20 g mouse	4.14E+01 ± 1.28E+01	4.14E-02	2.20E-02 ± 3.00E-03	4.14E-05	3.39E-08	74
Lung	Structural	Alveolar Macrophage Volume	cm ³		х	70 kg human, 20 g mouse	8.20E+00 ± 3.10E+00	8.20E-03	1.30E-03 ± 2.00E-04	8.20E-06	2.30E-07	74
Lung	Structural	Total cell number			1.00	69 kg human, 19.2 cell number increases proportionally with g mouse	1.84E+11 ± 6.40E+10	1.84E+08	1.19E+08 ± 2.70E+07	1.84E+05	1.84E+02	74
Lung	Structural	Type 1 Epithelial Cell Number			1.00	69 kg human, 19.2 cell number increases proportionally with g mouse	1.96E+10 ± 9.00E+03	1.96E+07	1.16E+07 ± 3.60E+06	1.96E+04	1.96E+01	74
Lung	Structural	Type 2 Epithelial Cell Number			1.00	$69\ kg$ human, $19.2\ body$ mass g mouse	3.29E+10 ± 1.36E+10	3.29E+07	1.48E+07 ± 3.90E+06	3.29E+04	3.29E+01	74
Lung	Structural	Interstitial Cell Number			1.00	69 kg human, 19.2 cell number increases proportionally with g mouse	5.25E+10 ± 1.18E+10	5.25E+07	2.69E+07 ± 3.60E+06	5.25E+04	5.25E+01	74
Lung	Structural	Endothelial Cell Number			1.00	69 kg human, 19.2 cell number increases proportionally with g mouse	7.32E+10 ± 2.88E+10	7.32E+07	6.28E+07 ± 1.53E+07	7.32E+04	7.32E+01	74
Lung	Structural	Alveolar Macrophages Number			1.00	69 kg human, 19.2 cell number increases proportionally with g mouse body mass	5.99E+09 ± 1.90E+09	5.99E+06	2.90E+06 ± 5.00E+05	5.99E+03	5.99E+00	74
Lung	Structural	Tracheal Radius	cm	N/A	0.39	Theoretical: 0.375 Experimental: 0.39	2.50E+00	2.50E-03		2.50E-06	2.50E-09	75
Lung	Structural	Volume of Alveolus	μm³	N/A	0.25	Theoretical: 0.25 (assuming sphere and radius of 100 um)	4.19E+06	4.19E+03		4.19E+00	4.19E-03	75
Lung	Structural	Number of Alveoli		N/A	0.75	Theoretical: 0.75	4.00E+08 ± 1.00E+08	4.00E+05		4.00E+02	4.00E-01	75
Lung	Structural	Area of Alveolus	μm²	N/A	0.17	Theoretical: 0.167 (assuming sphere and radius of 100 um)	1.26E+05	1.26E+02		1.26E-01	1.26E-04	75
Lung	Structural	Area of Lungs	m ²	N/A	0.95	Theoretical: 0.92 Experimental: 0.95	7.00E+01	7.00E-02	8 40E 01	7.00E-05	7.00E-08	75 75
Blood	Wetabolic		IIIE/III/g	N/A	0.75	medicali. 0.75 Experimental. 0.76	2.002-01	2.00E-04	0.402-01	2.002-07	2:00E-10	Blood
Blood	Structural	Volume	mL	7.60E-02	1.00	p value<.001	4.85E+03 ± 1.50E+02	5.32E-03 4.85E+00 2.59E+00 4.50E+04	2.00E+00 ± 5.00E-01 2.75E+01 ± 2.50E+00	5.32E-06 4.85E-03	5.32E-09 4.85E-06	61;76 61
Blood	Structural	Creatinine	umol/L	5.83E+01	0.14	p value<.001	8.90E+01 ± 2.90E+01	3.99E+01 8.90E+01	4.86E+01 ± 3.09E+01	1.48E+01 8.90E+01	5.53E+00 8.90E+01	77-79
Blood	Structural	K+	mmol/L	5.20E+00	-0.03	p value<.001	4.80E+00 ± 1.30E+00	5.66E+00 4.80E+00	6.25E+00 ± 1.25E+00	7.06E+00 4.80E+00	8.81E+00 4.80E+00	77;78;80
Blood	Structural	Urea	mmol/L % Volume	7.30E+00	-0.08	p value<.001	4.10E+00 ± 2.90E+00 5.05E+01 + 1.15E±01	9.10E+00 4.10E+00 4.45E+01 5.05E+01	3.41E+00 ± 2.08E+00 4.40E+01 ± 5.00E+00	1.62E+01 4.10E+00 5.15E+01 5.05E+01	2.87E+01 4.10E+00 5.95E+01 5.05E+01	77-79 77-78-81
Blood	Structural	Hemoglobin	g/L	1.44E+02	-0.02	p value<.001	1.53E+02 ± 2.25E+01	1.53E+02 1.53E+02	1.34E+02 ± 3.20E+01	1.81E+02 1.53E+02	2.14E+02 1.53E+02	77;78;81
Blood	Structural	Glucose	mmol/L	6.40E+00	-0.05	p value<.001	4.95E+00 ± 1.15E+00	7.25E+00 4.95E+00	6.58E+00 ± 3.14E+00	1.00E+01 4.95E+00	1.39E+01 4.95E+00	77-79
Blood	Structural	Triglycerides	mmol/L	9.00E-01	-0.14	p value<.001	9.00E-01 ± 3.00E-01	1.29E+00 9.00E-01	9.22E-01 ± 2.40E-01	3.27E+00 9.00E-01	8.32E+00 9.00E-01 5.10E+01 7.20E+01	77-79
Blood	Structural	Ca2+	g/L mmol/L	2.60E+00	-0.01	p value=0.011	1.17E+00 ± 1.35E-01	2.67E+00 1.17E+00	2.15E+00 ± 3.70E-01	2.86E+00 1.17E+00	3.07E+00 1.17E+00	77;78
Blood	Structural	Na+	mmol/L	1.46E+02	0.00	p value=0.039	1.41E+02 ± 6.00E+00	1.47E+02 1.41E+02	1.50E+02 ± 1.00E+01	1.51E+02 1.41E+02	1.55E+02 1.41E+02	77;78
Blood	Structural	Phospohorus	mmol/L	1.90E+00	-0.02	p value=0.118	1.25E+00 ± 2.50E-01	2.00E+00 1.25E+00	2.41E+00 ± 5.65E-01	2.30E+00 1.25E+00	2.64E+00 1.25E+00	77;78;81

Blood	Structural	CI-	mmol/L	1.05E+02	-0.01	p value=0.299	1.03E+02 ± 7.50E+00	1.07E+02 1.03E+0	2 9.90E+01 ± 1.10E+01	1.13E+02 1.0	3E+02	1.19E+02	1.03E+02	77;78
Blood	Structural	Total Bilirubin	umol/L	4.20E+00	-0.09	p value=0.528	1.34E+01 ± 1.17E+01	5.32E+00 1.34E+0	1 7.70E+00 ± 7.70E+00	9.84E+00 1.3	4E+01	1.82E+01	1.34E+01	77;78;81
Blood	Structural	Mg2+	mmol/L	9.00E-01	-0.03	p value=0.721	1.90E+00 ± 4.00E-01	9.64E-01 1.90E+0	0 2.35E+00 ± 1.55E+00	1.15E+00 1.9	0E+00	1.38E+00	1.90E+00	77;78;82
Blood	Structural	Cholesterol	mmol/L	2.70E+00	-0.04	p value=0.774	4.75E+00 ± 1.75E+00	3.00E+00 4.75E+0	0 2.88E+00 ± 6.70E-01	3.96E+00 4.7	5E+00	5.22E+00	4.75E+00	77-79
Blood	Functional	Wall Shear Stress Along the Infrarenal Aorta**	dyn/cm^2	2.60E+00	-0.38	p value<.05	4.80E+00 ± 3.00E-01	7.14E+00 4.80E+0	0 8.76E+01 ± 8.30E+00	9.86E+01 4.8	0E+00	1.36E+03	4.80E+00	83
Blood	Functional	Oxygen Carriers	Relative oxygen capacity	α (mL O2/(mL B *atm)) at 37 C	Oxygen binding capacity (mL O2/g)	Oxygen Diffusivity *10^9 (m^2/s)								Blood O2 Carriers
Blood	Functional	Water	1	2.39E-02	-	2.89								84;85
Blood	Functional	Hemoglobin	70	3.30E-02	1.37	0.838								85
Blood	Functional	Perfluorocarbon	20	3.50E-01	-	8.29								86;87
Blood	Functional	Blood	70	2.23E-02	-	1.33								85
														1
NOTES														
1	In certain cases if	the literature values for the allometric scalir	na laws were for bod	v mass in units	other than ka ar	nd hence have been scaled for consistency								/

Literature Cited

- Herculano-Houzel,S. The Human Brain in Numbers: a Linearly Scaled-Up Primate Brain, Front.Hum.Neurosci., 3, Article 31 2009
- Im,K, Lee,JM, Lyttelton,O, Kim,SH, Evans,AC, Kim,SI. Brain Size and Cortical Structure in the Adult Human Brain, Cerebral Cortex, 18, 2181-2191, 2008
- Herculano-Houzel, S, Mota, B, Wong, PY, Kaas, JH. Connectivity-Driven White Matter Scaling and Folding in Primate Cerebral Cortex, PNAS (US), 107, 19008-19013, 2010
- Beglev, DJ. Understanding and Circumventing the Blood-Brain Barrier, Acta Paediatrica, 92, 83-91, 2003
- Azevedo, FAC, Carvalho, LRB, Grinberg, LT, Farfel, JM, Ferretti, REL, Leite, REP, Jacob, W, Lent, R, Herculano-Houzel, S. Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain, J.Comp.Neurol., 513, 532-541, 2009
- Haug, H. Brain Sizes, Surfaces, and Neuronal Sizes of the Cortex Cerebri: A Stereological Investigation of Man and His Variability and A Comparison With Some Mammals (Primates, Whales, Marsupials, Insectivores, and One Elephant, Am.J.Anat., 180, 126-142, 1987
- Kreczmanski, P, Heinsen, H, Mantua, V, Woltersdorf, F, Masson, T, Ulfig, N, Schmidt-Kastner, R, Korr, H, Steinbusch, HWM, Hof, PR, Schmitz, C. Microvessel Length Density, Total Length, and Length Per Neuron in Five Subcortical Regions in Schizophrenia, Acta Neuropathol. (Berl)., 117, 409-421, 2005 7
- 8 Reichel, A. Addressing Central Nervous System (CNS) Penetration in Drug Discovery: Basics and Implications of the Evolving New Concept, Chem. Biodivers., 6, 2030-2049, 2009
- Pakkenberg B and Gundersen HIG. Neocortical Neuron Number in Humans: Effect of Sex and Age. J.Comp. Neurol., 384, 312-320, 1997 Q
- 10 Karbowski, J. Global and Regional Brain Metabolic Scaling and Its Functional Consequences, BMC Biol., 5, Article 18 2007
- 11 Abbott, NJ, Patabendige, AAK, Dolman, DEM, Yusof, SR, Begley, DJ. Structure and Function of the Blood-Brain Barrier, Neurobiol. Dis., 37, 13-25, 2010
- 12 Perge, JA, Niven, JE, Mugnaini, E, Balasubramanian, V, Sterling, P. Why Do Axons Differ in Caliber?, J.Neurosci., 32, 626-638, 2012
- 13 Lyck, L, Santamaria, ID, Pakkenberg, B, Chemnitz, J, Schroder, HD, Finsen, B, Gundersen, HJG. An Empirical Analysis of the Precision of Estimating the Numbers of Neurons and Glia in Human Neocortex Using a Fractionator-Design With Sub-Sampling, J.Neurosci. Methods, 182, 143-156, 2005
- Davies.B and Morris,T. Physiological-Parameters in Laboratory-Animals and Humans, Pharm.Res., 10, 1093-1095, 1993 14
- 15 Mchenry, LC. Cerebral Blood Flow, N.Engl.J.Med., 274, 82-91, 1966
- Aanerud, J, Borghammer, P, Chakravarty, MM, Vang, K, Rodell, AB, Jonsdottir, KY, Moller, A, Ashkanian, M, Vafaee, MS, Iversen, P, Johannsen, P, Gjedde, A. Brain Energy Metabolism and Blood Flow Differences in Healthy Aging, J.Cerebr.Blood F.Met., 32, 1177-1187, 2012 16
- 17 Koutsiaris,AG, Tachmitzi,SV, Batis,N, Kotoula,MG, Karabatsas,CH, Tsironi,E, Chatzoulis,DZ. Volume Flow and Wall Shear Stress Quantification in the Human Conjunctival Capillaries and Post-Capillary Venules in Vivo, Biorheology, 44, 375-386, 2007
- 18 Cucullo, L, Hossain, M, Puvenna, V, Marchi, N, Janigro, D. The Role of Shear Stress in Blood-Brain Barrier Endothelial Physiology, BMC Neurosci., 12, 40 2011
- 19 Aaslid, R. Lindegaard, KF. Sorteberg, W. Nornes, H. Cerebral Autoregulation Dynamics in Humans, Stroke, 20, 45-52, 1989
- Mota, B and Herculano-Houzel, S. How the Cortex Gets Its Folds: an Inside-Out, Connectivity-Driven Model for the Scaling of Mammalian Cortical Folding, Frontiers in Neuroanatomy, 6, Article 3 2012 20
- Herculano-Houzel, S. Scaling of Brain Metabolism With a Fixed Energy Budget Per Neuron: Implications for Neuronal Activity, Plasticity and Evolution, PloS.One., 6, Article e17514 2011 21
- 22 Rakusan,K, Flanagan,MF, Geva,T, Southern,J, Vanpraagh,R. Morphometry of Human Coronary Capillaries During Normal Growth and the Effect of Age in Left-Ventricular Pressure-Overload Hypertrophy, Circulation, 86, 38-46, 1992
- Irons, RD. The Mouse in Biomedical-Research, Vol 3, Normative Biology, Immunology, and Husbandry Foster, HI, Small, Jd, Fox, Jg, Am. Sci., 72, 632 1984 23
- Edwards,WD and Kitzman,DW. Age-Related-Changes in the Anatomy of the Normal Human Heart, J.Gerontol., 45, M33-M39, 1990 24
- 25 Popovic,ZB, Sun,JP, Yamada,H, Drinko,J, Mauer,K, Greenberg,NL, Cheng,YN, Moravec,CS, Penn,MS, Mazgalev,TN, Thomas,JD. Differences in Left Ventricular Long-Axis Function From Mice to Humans Follow Allometric Scaling to Ventricular Size, J.Physiol.Lond., 568, 255-265, 2005
- 26 Lutgens, E. Daemen, MJAP, de Muinck, ED, Debets, J. Leenders, P. Smits, JFM, Chronic Myocardial Infarction in the Mouse: Cardiac Structural and Functional Changes, Cardiovasc, Res., 41, 586-593, 1999
- DeMaria, AN, Neumann, A, Lee, G, Fowler, W, Mason, DT. Alterations in Ventricular Mass and Performance Induced by Exercise Training in Man Evaluated by Echocardiography, Circulation, 57, 237-244, 1978 27
- 28 Anversa, P, Kajstura, J, Reiss, K, Quaini, F, BALDINI, ALES, Olivetti, G, Sonnenblick, EH. Ischemic Cardiomyopathy: Myocyte Cell Loss, Myocyte Cellular Hypertrophy, and Myocyte Cellular Hyperplasia, Ann. New York Acad. Sci., 752, 47-64, 1995
- 29 Olivetti, G. Capasso, JM. Sonnenblick, EH. Anversa, P. Side-To-Side Slippage of Myocytes Participates in Ventricular Wall Remodeling Acutely After Myocardial-Infarction in Rats, Circ, Res., 67, 23-34, 1990
- Henschel, E and Kyrieleis, C. Thermodynamische Messung Äußerer Organoberflächen, Virchows Archiv, 333, 22-28, 1960 30
- 31 Vaidya, D, Morley, GE, Samie, FH, Jalife, J. Reentry and Fibrillation in the Mouse Heart - A Challenge to the Critical Mass Hypothesis, Circ. Res., 85, 174-181, 1999
- 32 Bachner-Hinenzon,N, Ertracht,O, Leitman,M, Vered,Z, Shimoni,S, Beeri,R, Binah,O, Adam,D. Layer-Specific Strain Analysis by Speckle Tracking Echocardiography Reveals Differences in Left Ventricular Function Between Rats and Humans, Am.J.Physiol.Heart, 299, H664-H672, 2010
- 33 Tibayan, FA, Rodriguez, F, Langer, F, Liang, D, Daughters, GT, Ingels, NB, Miller, DC. Undersized Mitral Annuloplasty Alters Left Ventricular Shape in Acute Ischemic Mitral Regurgitation, Circulation, 108, Suppl.S, 476 2003
- 34 Indermuhle, A, Vogel, R, Meier, P, Zbinden, R, Seiler, C. Myocardial Blood Volume and Coronary Resistance During and After Coronary Angioplasty, Am.J. Physiol. Heart, 300, H1119-H1124, 2011
- 35 Brands, J, Spaan, JAE, Van den Berg, BM, Vink, H, Van Teeffelen, JWGE. Acute Attenuation of Glycocalyx Barrier Properties Increases Coronary Blood Volume Independently of Coronary Flow Reserve, Am. J. Physiol. Heart, 298, H515-H523, 2010
- Schlosser, T. Pagonidis, K. Herborn, CU. Hunold, P. Waltering, KU. Lauenstein, TC. Barkhausen, J. Assessment of Left Ventricular Parameters Using 16-MDCT and New Software for Endocardial and Epicardial Border Delineation, Am. J. Roentgenol., 184, 765-773, 2005 36
- 37 Stegger, L, Heijman, E, Schafers, KP, Nicolay, K, Schafers, MA, Strijkers, GJ. Quantification of Left Ventricular Volumes and Ejection Fraction in Mice Using PET, Compared With MRI, J.Nucl.Med., 50, 132-138, 2009
- Fisele JC, Schaefer JM, Nyengaard JR, Post H, Liebetanz D, Brul A, Muhlfeld C, Effect of Voluntary Exercise on Number and Volume of Cardiomyocytes and Their Mitochondria in the Mouse Left Ventricle, Basic Res Cardiol., 103, 12-21, 2008 38
- 39 Bersell,K, Arab,S, Haring,B, Kuhn,B. Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury, Cell, 138, 257-270, 2009
- 40 Laflamme, MA and Murry, CE. Heart Regeneration, Nature, 473, 326-335, 2011
- 41 Crescenzi, M. Reactivation of the Cell Cycle in Terminally Differentiated Cells. Landes Bioscience, Georgetown, TX, 2002
- Lancel, S, Joulin, O, Favory, R, Goossens, JF, Kluza, J, Chopin, C, Formstecher, P, Marchetti, P, Neviere, R. Ventricular Myocyte Caspases Are Directly Responsible for Endotoxin-Induced Cardiac Dysfunction, Circulation, 111, 2596-2604, 2005 42
- 43 Nakayama, M, Yan, XH, Price, RL, Borg, TK, Ito, K, Sanbe, A, Robbins, J, Lorell, BH. Chronic Ventricular Myocyte-Specific Overexpression of Angiotensin II Type 2 Receptor Results in Intrinsic Myocyte Contractile Dysfunction, Am. J. Physiol. Heart, 288, H317-H327, 2005
- Torrance, RW. Allometric Algorithms and the Work of the Heart, Respir. Physiol., 113, 95-99, 1998 44
- van der Laarse, WJ. Energetics of Small Hearts, J. Physiol. Lond., 573, 1 2006 45
- Janssen, B, Debets, J, Leenders, P, Smits, J. Chronic Measurement of Cardiac Output in Conscious Mice, Am. J. Physiol-Reg. 1., 282, R928-R935, 2002 46
- 47 Cleveland Clinic Foundation. Cleveland Clinic Heart Book. 1st ed., Topol, EJ, ed. Hyperion, New York, 2000
- 48 Talley, NJ and O'Connor, S. Examination Medicine: a Guide to Physician Training. 6th ed., Churchill Livingstone Elsevier, Sydney; New York, 2010
- Gunther, B and Morgado, E. Allometric Scaling of Biological Rhythms in Mammals, Biol.Res., 38, 207-212, 2005 49
- 50 Weinberg, PD and Ethier, CR, Twenty-Fold Difference in Hemodynamic Wall Shear Stress Between Murine and Human Aortas, J.Biomech., 40, 1594-1598, 2007
- 51 Suarez, RK and Darveau, CA, Multi-Level Regulation and Metabolic Scaling, J. Exp. Biol., 208, 1627-1634, 2005
- 52 Adolph, EF. Quantitative Relations in the Physiological Constitutions of Mammals, Science, 109, 579-585, 1949 53 Calder, WA. Scaling of Physiological Processes in Homeothermic Animals, Annu, Rev. Physiol., 43, 301-322, 1981
- 54
- Prothero, J. Organ Scaling in Mammals the Kidneys, Comp.Biochem.Phys.A, 77, 133-138, 1984

- 55 Mordenti, J, Chen, SA, Moore, JA, Ferraiolo, BL, Green, JD. Interspecies Scaling of Clearance and Volume of Distribution Data for 5 Therapeutic Proteins, Pharm. Res., 8, 1351-1359, 1991
- 56 Beuchat, CA. Structure and Concentrating Ability of the Mammalian Kidney: Correlations With Habitat, Am.J.Physiol-Reg.I., 271, R157-R179, 1996
- 57 Beuchat, CA. Metabolism and the Scaling of Urine Concentrating Ability in Mammals Resolution of A Paradox, J.Theor.Biol., 143, 113-122, 1990
- 58 Edwards,NA. Scaling of Renal Functions in Mammals, Comp.Biochem.Phys.A, 52, 63-66, 1975
- Calder, WA, III and Braun, EJ. Scaling of Osmotic Regulation in Mammals and Birds, Am.J.Physiol., 244, R601-R606, 1983
 Singer, MA, Of Mice and Men and Elephants: Metabolic Rate Sets Glomerular Filtration Rate. Am. LKidney Dis., 37, 164-178, 2001
- Singer,MA. Of Mice and Men and Elephants: Metabolic Rate Sets Glomerular Filtration Rate, Am.J.Kidney Dis., 37, 164-178, 2001
 Boxenbaum,H. Interspecies Scaling, Allometry, Physiological Time, and the Ground Plan of Pharmacokinetics, J.Pharmacokinet.Biopharm., 10, 201-227, 1982
- 4 doverside and the species scaling, including in mice in the and the drouge and the drouge scaling in the intervention of the matexanice species scaling in Mammals, PNAS (US), 104, 4718-4723, 2007
 5 available of cells with Body Size in Mammals, PNAS (US), 104, 4718-4723, 2007
- Abrahms,S, Greenwald,L, Stetson,DL. Contribution of Renal Medullary Mitochondrial Density to Urinary Concentrating Ability in Mammals, Am. JPhysiol., 261, R719-R726, 1991
- 6 Else,PL and Hulbert,AL An Allometric Comparison of the Mitchondria of Mammalian and Reptilian Tissues the implications for the Evolution of Endothermy, J.Comp.Physiol.B, 156, 3-11, 1985
- 65 Prothero, JW. Organ Scaling in Mammals: The Liver, Comparative Biochemistry and Physiology Part A: Physiology, 71, 567-577, 1982
- 66 Boxenbaum,H. Interspecies Variation in Liver Weight, Hepatic Blood-Flow, and Antipyrine Intrinsic Clearance Extrapolation of Data to Benzodiazepines and Phenytoin, J.Pharmacokinet.Biopharm., 8, 165-176, 1980
- 67 Booth, J, Boyland, E, Cooling, C. Respiration of Human Liver Tissue, Biochem. Pharmacol., 16, 721-724, 1967
- 68 Sohlenius-Sternbeck, AK. Determination of the Hepatocellularity Number for Human, Dog, Rabbit, Rat and Mouse Livers From Protein Concentration Measurements, Toxicol. in Vitro, 20, 1582-1586, 2006
- 69 Couture, P and Hulbert, AJ. Relationship Between Body-Mass, Tissue Metabolic-Rate, and Sodium-Pump Activity in Mammalian Liver and Kidney, Am.J.Physiol-Reg. 1, 268, R641-R650, 1995
- 70 Domansky,K, Inman,W, Serdy,J, Dash,A, Lim,MHM, Griffith,LG. Perfused Multiwell Plate for 3D Liver Tissue Engineering, Lab Chip, 10, 51-58, 2010
- 71 Lave, T, Dupin, S, Schmitt, C, Chou, RC, Jaeck, D, Coassolo, P. Integration of in Vitro Data into Allometric Scaling to Predict Hepatic Metabolic Clearance in Man: Application to 10 Extensively Metabolized Drugs, J. Pharm. Sci., 86, 584-590, 1997
- 72 Stahl, WR. Scaling of Respiratory Variables in Mammals, J.Appl.Physiol., 22, 453-460, 1967
- 73 Hou, C and Mayo, M. Pulmonary Diffusional Screening and the Scaling Laws of Mammalian Metabolic Rates, Phys. Rev. E, 84, Article 061915 2011
- 74 Stone,KC, Mercer,RR, Gehr,P, Stockstill,B, Crapo,JD. Allometric Relationships of Cell Numbers and Size in the Mammalian Lung, Am.J.Respir.Cell Mol.Biol., 6, 235-243, 1992
- 75 West, GB, Brown, JH, Enquist, BJ. A General Model for the Origin of Allometric Scaling Laws in Biology, Science, 276, 122-126, 1997
- 76 Prothero, JW. Scaling of Blood Parameters in Mammals, Comp.Biochem.Phys.A, 67, 649-657, 1980
- 77 Reference Ranges for Blood Tests, Wikipedia: The Free Encyclopedia Wikimedia Foundation, Inc., 5/1/2012,
- 78 Kjeld, M and Olafsson, O. Allometry (Scaling) of Blood Components in Mammals: Connection With Economy of Energy?, Can.J.Zool., 86, 890-899, 2008
- 79 Fernandez,I, Pena,A, Del Teso,N, Perez,V, Rodriguez-Cuesta,J. Clinical Biochemistry Parameters in C57BL/6J Mice After Blood Collection From the Submandibular Vein and Retroorbital Plexus, J.Am. Assoc.Lab.Anim.Sci., 49, 202-206, 2010
- 80 Arrighi, I, Bloch-Faure, M, Grahammer, F, Bleich, M, Warth, R, Mengual, R, Drici, MD, Barhanin, J, Meneton, P. Altered Potassium Balance and Aldosterone Secretion in a Mouse Model of Human Congenital Long QT Syndrome, PNAS (US), 98, 8792-8797, 2001
- 81 Reference Values for Laboratory Animals, Research Animal Resources University of Minnesota, 2/19/2013, http://www.ahc.umn.edu/rar/refvalues.html
- 82 Krauss, GL, Kaplan, P, Fisher, RS. Parenteral Magnesium-Sulfate Fails to Control Electroshock and Pentylenetetrazol Seizures in Mice, Epilepsy Res., 4, 201-206, 1989
- 83 Greve,JM, Les,AS, Tang,BT, Blomme,MTD, Wilson,NM, Dalman,RL, Pelc,NJ, Taylor,CA. Allometric Scaling of Wall Shear Stress From Mice to Humans: Quantification Using Cine Phase-Contrast MRI and Computational Fluid Dynamics, Am.J. Physiol. Heart, 291, H1700-H1708, 2006
- 84 Piret, JM and Cooney, CL. Model of Oxygen-Transport Limitations in Hollow Fiber Bioreactors, Biotechnol. Bioeng., 37, 80-92, 1991
- 85 Roselli,RJ and Diller,KR. Biotransport: Principles and Applications. 1st ed., Springer, New York, 2011
- 86 Middleman, S. An Introduction to Fluid Dynamics: Principles of Analysis and Design. 1st ed., Wiley, New York, 1998
- 87 Hartog,A, de Anda,GFV, Gommers,D, Kaisers,U, Verbrugge,SJC, Schnabel,R, Lachmann,B. Comparison of Exogenous Surfactant Therapy, Mechanical Ventilation With High End-Expiratory Pressure and Partial Liquid Ventilation in a Model of Acute Lung Injury, British Journal of Anaesthesia, 82, 81-86, 1999