Simple modular systems for generation of droplets on demand

Krzysztof Churski, Michal Nowacki, Piotr M. Korczyk and Piotr Garstecki*

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland; E-mail: garst@ichf.edu.pl

Fig. SI1 The dependence of the volume of droplets on 'time open' for five different pressures applied to the oil phase. Pressure applied to water was 100 bar.

- ¹⁰ *Resistive capillary.* We recorded high speed videos of the tip of the droplet phase during the process of generation of a droplet. We showed the volume in the tip as a function of time (Fig. 8). We tuned constant ratio between $p_{\text{reservoir}}$ and L ($p_{\text{reservoir}} = L_{\text{capillary}}$ 0.1 bar m⁻¹) for each conditions of droplets generation, thus
- ¹⁵ volumes o droplets should be identical. We noticed that together with the increase of $p_{\text{reservoir}}$ and $L_{\text{capillary}}$, droplets grow faster and them final volumes are higher. It results from neglected additional hydraulic resistance – R_{chip} . In order to eliminate the influence of R_{chip} on volumes of droplets we determined R_{chip} and ²⁰ found the minimal ratio $R_{\text{capillary}}/R_{\text{chip}}$, which makes volumes of

droplets independent on R_{chip} .

Fig. SI2 shows dependence of $Q_{\rm D}$ on $L_{\rm capillary}$. This relation strongly depends on $L_{\rm capillary}$ for short capillaries, what exhibits the influence of $R_{\rm chip}$ on the rate of flow of liquid in the chip. ²⁵ Together with the increase of $L_{\rm capillary}$, $Q_{\rm D}$ asymptotically tends to

be constant.

In order to find $R_{\rm chip}$ (actually $L_{\rm chip}$ – the hydraulic resistance of the chip in unit of capillary length) we rewrote Hagen-Poiseuille equation (with assumption that $L_{\rm capillary} \sim R_{\rm capillary}$ and $L_{\rm chip} \sim$

- ³⁰ R_{chip}) as a $L_{capillary} + L_{chip} \sim p_{reservoir}/Q_D$. Temporary assuming that $R_{capillary}/R_{chip} >> 1$, we plotted relation $L_{capillary} \sim p_{reservoir}/Q_D$ (Fig. SI2). If indeed Q_D on $L_{capillary} >> 1$, this linear function will cross the coordinate system in the point (0,0). The shift of the root of this function to negative values comes from influence of
- ³⁵ R_{chip} on the rate of flow of liquid in microchannels. Thus, L_{chip} (resistance of the chip in unit of capillary length) of the chip filled with a sequence of a few drops (c.a. 5-6 drops) is the absolute value of the root of this function. This calculation estimates R_{chip} to be equal to the hydraulic resistance of a steel capillary of the
- 40 inside diameter of 0.205 mm and of the length of 0.1 m.

Fig. SI2 The dependence of Q_D on $L_{capillary}$. In the inset the dependence of $p_{reservoin'}/Q_D$ on $L_{capillary}$ for linear parts of the evolution of volume of droplets in time, during their generation (Fig. 8). We determined R_{chip} (in 45 unit of capillary length) as an absolute value of the root of this function.

Fig. SI3 The theoretical dependence of $Q_{\rm D}$ on $\log_{10}(R_{capillary}/R_{chip})$. The ratio above 10^3 sufficiently eliminates the dependence of volume of droplet on $R_{\rm chip}$.

Fig. SI4 The decrease of volume of droplets as a result of the increase of the number of droplets in the microchannel. For each length of the capillary ($L_{capillary} = 0.25$, 1, 4 m) we applied the pressure $p_{reservoir} = 5 L_{capillary} 0.1$ bar m⁻¹.

Fig. SI5 The dependence of the volume of droplets on the frequency of their generation in the system operated with a squeeze valve. Time open ¹⁰ of the valve 8 ms, the pressure applied to water is 100 mbar.