Supplementary Information

I. 4 control lines

Case 1) all 4 control lines are 50 kPa

All four control lines are selected as P_{50kPa} . The number of control pressure combination is ${}_{4}C_{4} = 1$. The unique combination in this case is (C₁:50kPa, C₂:50kPa, C₃:50kPa, C₄:50kPa).

Case 2) 1 line is 100 kPa and 2 control lines are 50kPa

Due to the dependency of control pressure as we explained above, P_{100kPa} in a control line requires the choice of P_{low} in the same control line. Once we choose one among four control lines for P_{100kPa} , P_{50kPa} is automatically selected and we lose one option. So cases are to choose two control lines among the four control lines for P_{50kPa} ($_4C_2$) and choose one control lines among the remaining two ($_2C_1$). Therefore, overall number of pressure combinations is $_4C_2 \times _2C_1 = 12$. The pressure combinations are (C_1 :100kPa, C_1 :50kPa, C_2 :50kPa, C_3 :50kPa), (C_1 :100kPa, C_1 :50kPa, C_3 :50kPa, C_4 :50kPa), (C_1 :100kPa, C_1 :50kPa, C_3 :50kPa, C_4 :50kPa), (C_2 :100kPa, C_2 :50kPa, C_3 :50kPa, C_4 :50kPa), (C_3 :100kPa, C_3 :50kPa, C_2 :50kPa).

Case 4) 2 line are 100 kPa

In this case, we need two control lines with P_{100kPa} . Each P_{100kPa} require P_{50kPa} in the same control line and no other options are left. The pressure combination is to choose two among four control lines, ${}_{4}C_{2} = 6$. The detailed pressure combinations are (C₁:100kPa, C₁:50kPa, C₂:100kPa, C₂:100kPa, C₂:50kPa), (C₁:100kPa, C₁:50kPa, C₃:100kPa, C₃:50kPa), (C₁:100kPa, C₁:50kPa, C₃:100kPa, C₃:50kPa), (C₂:100kPa, C₂:50kPa), (C₂:100kPa, C₂:50kPa, C₃:100kPa, C₃:100kPa, C₃:50kPa), (C₂:100kPa, C₄:100kPa, C₄:100kPa, C₄:50kPa), (C₃:100kPa, C₃:50kPa, C₄:100kPa, C₄:50kPa).

$$F_{Total} = 1 + 12 + 6 = 19$$

II. 6 control lines

In case for 6 control lines (*n*=6, *m*=2), equation 3 and 4 are,

$$a_1 + 2a_2 = 6, \ a_1 + a_2 \le 6$$

 (a_1, a_2) satisfying these equations are $(a_1=6, a_2=0)$, $(a_1=4, a_2=1)$, $(a_1=2, a_2=2)$, $(a_1=0, a_2=3)$. In each case, the number of controllable fluidic channels is,

Case 1) All 6 control lines are 50kPa, $F_{a_1=6, a_2=0} = {}_{6}C_6 = 1$ Case 2) 1 control line is 100kPa and 4 control lines are 50kPa, $F_{a_1=4, a_2=1} = {}_{6}C_4 \cdot {}_{2}C_1 = 30$ Case 3) 2 control lines are 100kPa and 2 control lines are 50kPa, $F_{a_1=2, a_2=2} = {}_{6}C_2 \cdot {}_{4}C_2 = 90$ Case 4) 3 control lines are 100kPa, $F_{a_1=0, a_2=3} = {}_{6}C_3 = 20$

$$F_{Total} = 1 + 30 + 90 + 20 = 141$$

III. 8 control lines

In case for 8 control lines (*n*=8, *m*=2), equation 3 and 4 are,

$$a_1 + 2a_2 = 8$$
, $a_1 + a_2 \le 8$

 (a_1, a_2) cases satisfying these equations are $(a_1=8, a_2=0)$, $(a_1=6, a_2=1)$, $(a_1=4, a_2=2)$, $(a_1=2, a_2=3)$, $(a_1=0, a_2=4)$. In each case, the number of controllable fluidic channels is,

Case 1) All 8 control lines are 50 kPa, $F_{a_1=8, a_2=0} = {}_{8}C_8 = 1$

Case 2) 1 control line is 100kPa and 6 control lines are 50kPa, $F_{a_1=6, a_2=1} = {}_{8}C_6 \cdot {}_{2}C_1 = 56$ Case 3) 2 control lines are 100kPa and 4 control lines are 50kPa, $F_{a_1=4, a_2=2} = {}_{8}C_4 \cdot {}_{4}C_2 = 420$ Case 4) 3 control lines are 100kPa and 2 control lines are 50kPa, $F_{a_1=2, a_2=3} = {}_{8}C_2 \cdot {}_{6}C_3 = 560$ Case 5) 4 control lines are 100kPa, $F_{a_1=0, a_2=4} = {}_{8}C_4 = 70$

$$F_{Total} = 1 + 56 + 420 + 560 + 70 = 1,107$$

IV. 10 control lines

In case for 10 control line(n=10, m=2), equation 3 and 4 are,

$$a_1 + 2a_2 = 10, \ a_1 + a_2 \le 10$$

 (a_1, a_2) cases satisfying these equations are $(a_1=10, a_2=0)$, $(a_1=8, a_2=1)$, $(a_1=6, a_2=2)$, $(a_1=4, a_2=3)$, $(a_1=2, a_2=4)$, $(a_1=0, a_2=5)$. In each case, the number of controllable fluidic channels is,

Case 1) All 10 control lines are 50kPa, $F_{a_1=10, a_2=0} = {}_{10}C_{10} = 1$ Case 2) 1 control line is 100kPa and 8 control lines are 50kPa, $F_{a_1=8, a_2=1} = {}_{10}C_8 \cdot {}_{2}C_1 = 90$ Case 3) 2 control lines are 100kPa and 6 control lines are 50kPa, $F_{a_1=6, a_2=2} = {}_{10}C_6 \cdot {}_{4}C_2 = 1260$ Case 4) 3 control lines are 100kPa and 4 control lines are 50kPa, $F_{a_1=4, a_2=3} = {}_{10}C_4 \cdot {}_{6}C_3 = 4200$ Case 5) 4 control lines are 100kPa and 2 control lines are 50kPa, $F_{a_1=2, a_2=4} = {}_{10}C_2 \cdot {}_{8}C_4 = 3150$ Case 6) 5 control lines are 100kPa, $F_{a_1=0, a_2=5} = {}_{10}C_5 = 252$

 $F_{Total} = 1 + 90 + 1260 + 4200 + 3150 + 252 = 8,953$