Supplementary Information

I. 4 control lines

Case 1) all 4 control lines are 50 kPa

All four control lines are selected as $P_{50 k P a}$. The number of control pressure combination is ${ }_{4} C_{4}=1$. The unique combination in this case is $\left(\mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{2}: 50 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}, \mathrm{C}_{4}: 50 \mathrm{kPa}\right)$.

Case 2) 1 line is 100 kPa and 2 control lines are 50 kPa
Due to the dependency of control pressure as we explained above, $\mathrm{P}_{100 \mathrm{kPa}}$ in a control line requires the choice of $P_{\text {low }}$ in the same control line. Once we choose one among four control lines for $\mathrm{P}_{100 \mathrm{kPa}}, \mathrm{P}_{50 \mathrm{kPa}}$ is automatically selected and we lose one option. So cases are to choose two control lines among the four control lines for $\mathrm{P}_{50 \mathrm{kPa}}\left({ }_{4} C_{2}\right)$ and choose one control lines among the remaining two $\left({ }_{2} C_{1}\right)$. Therefore, overall number of pressure combinations is ${ }_{4} C_{2} \times{ }_{2} C_{1}=12$. The pressure combinations are $\left(\mathrm{C}_{1}: 100 \mathrm{kPa}, \mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{2}: 50 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}\right),\left(\mathrm{C}_{1}: 100 \mathrm{kPa}, \mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{2}: 50 \mathrm{kPa}\right.$, $\left.\mathrm{C}_{4}: 50 \mathrm{kPa}\right),\left(\mathrm{C}_{1}: 100 \mathrm{kPa}, \mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}, \mathrm{C}_{4}: 50 \mathrm{kPa}\right),\left(\mathrm{C}_{2}: 100 \mathrm{kPa}, \mathrm{C}_{2}: 50 \mathrm{kPa}, \mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}\right)$, $\left(\mathrm{C}_{2}: 100 \mathrm{kPa}, \quad \mathrm{C}_{2}: 50 \mathrm{kPa}, \quad \mathrm{C}_{1}: 50 \mathrm{kPa}, \quad \mathrm{C}_{4}: 50 \mathrm{kPa}\right), \quad\left(\mathrm{C}_{2}: 100 \mathrm{kPa}, \mathrm{C}_{2}: 50 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}, \mathrm{C}_{4}: 50 \mathrm{kPa}\right)$, $\left(\mathrm{C}_{3}: 100 \mathrm{kPa}, \quad \mathrm{C}_{3}: 50 \mathrm{kPa}, \quad \mathrm{C}_{1}: 50 \mathrm{kPa}, \quad \mathrm{C}_{2}: 50 \mathrm{kPa}\right), \quad\left(\mathrm{C}_{3}: 100 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}, \mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{4}: 50 \mathrm{kPa}\right)$, $\left(\mathrm{C}_{3}: 100 \mathrm{kPa}, \quad \mathrm{C}_{3}: 50 \mathrm{kPa}, \quad \mathrm{C}_{2}: 50 \mathrm{kPa}, \quad \mathrm{C}_{4}: 50 \mathrm{kPa}\right), \quad\left(\mathrm{C}_{4}: 100 \mathrm{kPa}, \quad \mathrm{C}_{4}: 50 \mathrm{kPa}, \quad \mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{2}: 50 \mathrm{kPa}\right)$, $\left(\mathrm{C}_{4}: 100 \mathrm{kPa}, \mathrm{C}_{4}: 50 \mathrm{kPa}, \mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}\right),\left(\mathrm{C}_{4}: 100 \mathrm{kPa}, \mathrm{C}_{4}: 50 \mathrm{kPa}, \mathrm{C}_{2}: 50 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}\right)$.

Case 4) 2 line are 100 kPa

In this case, we need two control lines with $\mathrm{P}_{100 \mathrm{kPa}}$. Each $\mathrm{P}_{100 \mathrm{kPa}}$ require $\mathrm{P}_{50 \mathrm{kPa}}$ in the same control line and no other options are left. The pressure combination is to choose two among four control lines, ${ }_{4} C_{2}=6$. The detailed pressure combinations are $\left(\mathrm{C}_{1}: 100 \mathrm{kPa}, \mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{2}: 100 \mathrm{kPa}\right.$, $\left.\mathrm{C}_{2}: 50 \mathrm{kPa}\right), \quad\left(\mathrm{C}_{1}: 100 \mathrm{kPa}, \mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{3}: 100 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}\right),\left(\mathrm{C}_{1}: 100 \mathrm{kPa}, \mathrm{C}_{1}: 50 \mathrm{kPa}, \mathrm{C}_{4}: 100 \mathrm{kPa}\right.$, $\left.\mathrm{C}_{4}: 50 \mathrm{kPa}\right), \quad\left(\mathrm{C}_{2}: 100 \mathrm{kPa}, \mathrm{C}_{2}: 50 \mathrm{kPa}, \mathrm{C}_{3}: 100 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}\right),\left(\mathrm{C}_{2}: 100 \mathrm{kPa}, \mathrm{C}_{2}: 50 \mathrm{kPa}, \mathrm{C}_{4}: 100 \mathrm{kPa}\right.$, $\left.\mathrm{C}_{4}: 50 \mathrm{kPa}\right),\left(\mathrm{C}_{3}: 100 \mathrm{kPa}, \mathrm{C}_{3}: 50 \mathrm{kPa}, \mathrm{C}_{4}: 100 \mathrm{kPa}, \mathrm{C}_{4}: 50 \mathrm{kPa}\right)$.

$$
\mathrm{F}_{\text {Total }}=1+12+6=19
$$

II. 6 control lines

In case for 6 control lines $(n=6, m=2)$, equation 3 and 4 are,

$$
a_{1}+2 a_{2}=6, a_{1}+a_{2} \leq 6
$$

$\left(a_{1}, a_{2}\right)$ satisfying these equations are $\left(a_{1}=6, a_{2}=0\right),\left(a_{1}=4, a_{2}=1\right),\left(a_{1}=2, a_{2}=2\right),\left(a_{1}=0, a_{2}=3\right)$. In each case, the number of controllable fluidic channels is,

Case 1) All 6 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=6, a_{2}=0}={ }_{6} C_{6}=1$
Case 2) 1 control line is 100 kPa and 4 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=4, a_{2}=1}={ }_{6} C_{4} \cdot{ }_{2} C_{1}=30$
Case 3) 2 control lines are 100 kPa and 2 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=2, a_{2}=2}={ }_{6} C_{2} \cdot{ }_{4} C_{2}=90$
Case 4) 3 control lines are $100 \mathrm{kPa}, \mathrm{F}_{a_{1}=0, a_{2}=3}={ }_{6} C_{3}=20$

$$
\mathrm{F}_{\text {Total }}=1+30+90+20=141
$$

III. 8 control lines

In case for 8 control lines $(n=8, m=2)$, equation 3 and 4 are,

$$
a_{1}+2 a_{2}=8, a_{1}+a_{2} \leq 8
$$

$\left(a_{1}, a_{2}\right)$ cases satisfying these equations are $\left(a_{1}=8, a_{2}=0\right),\left(a_{1}=6, a_{2}=1\right),\left(a_{1}=4, a_{2}=2\right),\left(a_{1}=2\right.$, $\left.a_{2}=3\right),\left(a_{1}=0, a_{2}=4\right)$. In each case, the number of controllable fluidic channels is,

Case 1) All 8 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=8, a_{2}=0}={ }_{8} C_{8}=1$
Case 2) 1 control line is 100 kPa and 6 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=6, a_{2}=1}={ }_{8} C_{6} \cdot{ }_{2} C_{1}=56$
Case 3) 2 control lines are 100 kPa and 4 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=4, a_{2}=2}={ }_{8} C_{4} \cdot{ }_{4} C_{2}=420$
Case 4) 3 control lines are 100 kPa and 2 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=2, a_{2}=3}={ }_{8} C_{2} \cdot{ }_{6} C_{3}=560$
Case 5) 4 control lines are $100 \mathrm{kPa}, \mathrm{F}_{a_{1}=0, a_{2}=4}={ }_{8} C_{4}=70$

$$
\mathrm{F}_{\text {Total }}=1+56+420+560+70=1,107
$$

IV. 10 control lines

In case for 10 control line $(n=10, m=2)$, equation 3 and 4 are,

$$
a_{1}+2 a_{2}=10, a_{1}+a_{2} \leq 10
$$

$\left(a_{1}, a_{2}\right)$ cases satisfying these equations are $\left(a_{1}=10, a_{2}=0\right),\left(a_{1}=8, a_{2}=1\right),\left(a_{1}=6, a_{2}=2\right),\left(a_{1}=4\right.$, $\left.a_{2}=3\right),\left(a_{1}=2, a_{2}=4\right),\left(a_{1}=0, a_{2}=5\right)$. In each case, the number of controllable fluidic channels is,

Case 1) All 10 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=10, a_{2}=0}={ }_{10} C_{10}=1$
Case 2) 1 control line is 100 kPa and 8 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=8, a_{2}=1}={ }_{10} C_{8} \cdot{ }_{2} C_{1}=90$
Case 3) 2 control lines are 100 kPa and 6 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=6, a_{2}=2}={ }_{10} C_{6} \cdot{ }_{4} C_{2}=1260$
Case 4) 3 control lines are 100 kPa and 4 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=4, a_{2}=3}={ }_{10} C_{4} \cdot{ }_{6} C_{3}=4200$
Case 5) 4 control lines are 100 kPa and 2 control lines are $50 \mathrm{kPa}, \mathrm{F}_{a_{1}=2, a_{2}=4}={ }_{10} C_{2} \cdot{ }_{8} C_{4}=3150$
Case 6) 5 control lines are $100 \mathrm{kPa}, \mathrm{F}_{a_{1}=0, a_{2}=5}={ }_{10} C_{5}=252$

$$
\mathrm{F}_{\text {Total }}=1+90+1260+4200+3150+252=8,953
$$

