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Figure S1. Schematic of the fabrication process to create the microfluidic device mold. 

 
 

 
Figure S2. PC12 cells not under vacuum in the control experiment of Fig. 2b in the main text. 

 
 

 
Figure S3. Control experiment for immunofluorescence (IF) staining. Transmission image (left) 
shows PC12 cells with neurites while the corresponding fluorescence image (right) shows no 
neurites or cell bodies detected from the IF assay without using the primary antibody, Tau. 
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Figure S4. Stability of neurites. (a) PC12 cells, exposed to a vacuum of -600 Pa for 10 hours, 
were imaged by transmitted light microscopy immediately after stopping the vacuum. Arrows 
indicate the tips of neurites inside the microchannels. (b) Transmitted light images show neurites 
at 20 hours after halting the vacuum. The bottom image is a leftward extension of the top image. 
Asterisks (*) indicate the same spot in both images. The arrows indicate the new positions of 
neurite tips and clearly show that the neurites have extended following removal of the vacuum. 
The same color arrows show the same neurites in (a) and (b). All scale bars are 20 µm. 
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Figure S5. Growth rate of neurites versus sizes of cell body clumps in front of the 
microchannels. (a) The leftmost fluorescence image shows a typical neurite extending from a 
clump of cell bodies in front of the microchannel (exposed to -400 Pa for 12 hours). Scale bar is 
30 µm. A fixed area (white box, 40 µm × 40 µm) was chosen in front of the microchannels to 
estimate the area occupied by cell bodies. The middle image shows a zoom-in of the white box 
area, and the rightmost image shows a thresholded binary image (converted in Matlab), in which 
the white color indicates the cell-occupied area and the black color indicates the area not 
occupied by cells. The area occupied by cell clumps was measured as the white area as a 
percentage of the total area. (b) Cell clumps in front of individual microchannels, measured as 
described above, were plotted against measured the neurite growth rate. Neurite growth rate does 
not appear to correlate in any well-defined way with cell clump size (correlation = -0.26). 
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Equations for the growth of neurons

The growth of neurons occurs by the polymerization of micro-tubules at the tip of the neurite.
The transport of tubulin monomers occurs by diffusion. Lipid vesicles and other components are
also required for the growth of the neurite. These are transported actively. In the first model we
write we will account only for the diffusive transport. We will work with the model of van Veen
and van Pelt [1].

1 Van Veen and Van Pelt model

Van Veen and Van Pelt approximate the flux J = −D dQ
dx of tubulin into a neurite of length L by

J = −D
Qr −Qt

L
, (1)

where Qr is the concentration at the root or soma, Qt is the concentration at the growing tip and
D is a diffusion coefficient. If e is the length of a tubulin dimer then van Veen and van Pelt say
that

1
eV

dL

dt
= konQt − koff , (2)

where V is a small volume near the tip of the neurite where the assembly takes place. van Veen
and van Pelt also account for the change in length of the microtubules due to applied forces. Many
measurements have shown that the microtubules are under compression and the membrane under
tension in a growing neurite [3]. For example, Dennerll et al. found that the neurite tension varies
over a broad range from 0–10, 000pN. Due to the force the length L could change to kL where
k > 1 if the mirotubule is under tension and k < 1 if it is under compression. We will neglect this
effect here and take k ≈ 1. We also remember that force can modify the on-rate of the microtubule
assembly process [4]. We say that

kon(F ) = k0 exp(− Fδ

kBT
). (3)

where F > 0 is the force applied by the microtubule on the membrane. The physics behind
this equation is that the probability distribution function for the gap size x between the tip of the
growing microtubule and the fluctuating membrane is p(x) = F

kBT exp(− Fx
kBT ) when the fluctuations

of the tip are much faster than the reaction [4]. The membrane, of course, is in tension. In fact, a
rudimentary force balance on the hemispherical tip of the neurite of radius Rp gives

2πRpτ = πR2
pp + nF, (4)

where τ is the membrane tension (in units of force/length), p is the pressure difference between
the inside and outside of the cell, F is force exerted by a single microtubule on the tip and n is
the number of microtubules impinging on the growing tip. If τ is held constant then increasing p
would reduce F and enhance kon(F ). Note that δ is about the size of one monomer and according
to Howards book kBT

δ ≈ 2pN – 7pN. Summarizing the equations

1
eV

dL

dt
= konQt − koff , (5)

dQt

dt
= koff − konQt +

DA

V L
(Qr −Qt), (6)

dQr

dt
= I − DA

V L
(Qr −Qt), (7)
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where I is the rate (in units of concentration per unit time) of production of tubulin monomers in
the soma and A is the area of cross-section of the neurite. The differential equations above need
to be solved numerically. Typically, the initial conditions used are that L(0) = ε, Qr(0) = Q0 and
Qt(0) = 0 where ε is a small number and Q0 is a constant. Van Veen and Van Pelt did so and found
that after a fast initial phase Qr and L increase linearly with time and Qt converges to a constant
value. Motivated by the observations of the numerical experiments let us plug in the following into
the equations of Van Veen and Van Pelt:

L(t) = C1t + C2, Qr = C4t + C5, Qt = const. (8)

There are five unknowns above – C1, C2, C4, C5 and Qt. We get five equations by plugging these
into Van Veen and Van Pelt’s equations and comparing coefficients:

C1(koff − konQt) +
DA

V
C4 = 0, (9)

C2(koff − konQt) +
DA

V
(C5 −Qt) = 0, (10)

C4C1 − IC1 +
DA

V
C4 = 0, (11)

C4C2 − IC2 +
DA

V
(C5 −Qt) = 0, (12)

C1

eV
− konQt + koff = 0. (13)

By solving these equations we get

C1 =
DA

2V

−1 +

√
1 +

4eV 2I

DA

 , (14)

C4 = I − C1

eV
, (15)

Qt =
koff + C1

eV

kon
, (16)

C5 −Qt

C2
=

C1

eDA
. (17)

If eV 2I
DA is small (or diffusion is very fast) then it is easy to see that C1 = eV I, C4 = 0. We see

that kon does not enter the equation for C1. So, even if kon is increased due to an applied pressure
difference p the growth rate will remain unaffected unless I is somehow changed.

2 Samuels et al. model

We consider now a more sophisticated model of Samuels et al. who add a growth dependent active
transport term linear in BQr

dL
dt into the equations of Van Veen and Van Pelt where B is a constant.

They also consider the possibility of a growth independent active transport term of the form MQr

but assume M = 0 in their analysis. We would expect I, B and M to depend on external chemical
factors (growth factors, nutrition, energy providing molecules) that are added to the system. The
equations given by Samuels et al. are as follows:

dL

dt
= αQr, (18)
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dQt

dt
=

DA

VtipL
(Qr −Qt) +

BQr

Vtip

dL

dt
− G

Vtip

dL

dt
+

M

Vtip
Qr (19)

dQr

dt
=

S

Vsoma
− DA

VsomaL
(Qr −Qt)−

BQr

Vsoma

dL

dt
− M

Vsoma
Qr. (20)

Even if we set B = M = 0 these equations differ slightly from those of Van Veen and Van Pelt. First,
there is no koff , and second the ratio of volumes Vsoma/Vtip enters the equations. By comparing
the equations above with those of Van Veen and Van Pelt we expect that α should be proportional
to the on-rate kon, the rate of production of tubulin I = S

Vsoma
, and G ≈ 1/e where e is the length

of a tubulin dimer. As for numbers, Samuels et al. say that dL
dt is on the order of 5µm/hr. Similar

numbers are reported by Wissner-Gross et al. who did experiments on neurite growth and fitted
the equations of Samuels et al. to their data [6]. They give the following parameters:

χ1 =
DAG

SVsoma
= 5.7± 0.9, χ2 =

BS

αG2
= 36.8± 3.8 χ3 =

Vsoma

Vtip
= 5.2± 1.3, (21)

tsc =
Vsoma

αG
= 6.4± 0.5hr, Lsc =

VsomaS

αG2
= 51.3± 4.5µm. (22)

Samuels et al integrated the ODEs numerically (for the case M = 0) and found that after an
initial transient (that lasts about tsc) the growth rate dL

dt and the concentrations Qr and Qt tend
to constants. Our own numerical integrations using MATLAB confirmed this result. How can
we understand this? If L becomes larger and larger with Qr and Qt constant then the term
DA
L (Qr −Qt)→ 0. So, we expect that for long times

Qt =
S

αG
, Qr =

G

B
,

dL

dt
=

S

G
, if M = 0, (23)

Qt =
S

αG
, Qr =

S

M + BS
G

,
dL

dt
=

S

G
, if M 6= 0. (24)

In other words, all the tubulin produced in the soma is consumed by the growing neurite. Note
that the growth rate dL

dt is independent of α (which is proportional to kon) in this situation. So,
even if an applied pressure changes kon the growth rate will remain unaffected even in this model.

3 Diffusion limited growth

In the previous two models it was assumed that microtubule polymerization is reaction limited.
In other words, a monomer falls into the gap between the tip and the growing microtubule only
occassionally. In the diffusion limited case we assume that the monomer addition reaction is so fast
that as soon as a gap between the tip and a growing microtubule opens up, a monomer will drop
in [4]. In this case

dL

dt
≈ D1

δ

(Fδ/kBT )2

exp( Fδ
kBT )− 1− Fδ

kBT

(25)

Here D1 is a diffusion coefficient (different from D) and nF is the force being exerted on the tip
given by (4). When a large force is opposing the polymerization (in the absence of an externally
applied pressure) then polymerization is necessarily reaction limited. If Fδ

kBT << 1 then we can get

dL

dt
=

D1

2δ

[
1− Fδ

3kBT

]
(26)
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Since nF = 2πRpτ −πR2
pp = T0−Tapp we expect that the plot of growth rate against p will have a

positive slope. Writing dL
dt in terms of the rest tension T0 = 2πRpτ and applied force Tapp = πR2

pp
we get

dL

dt
=

D1

2δ

[
1 +

(Tapp − T0)δ
3nkBT

]
. (27)

This equation can be compared with the data of Lamoureux et al. who applied known forces on
growing neurites and measured their growth rates [7]. If we plot Tapp on the x-axis and dL

dt on
the y-axis then (27) plots as a straight line with x-intercept at Tapp = T0 − 3nkBT

δ . Lamoureux
et al. find that the intercept varied between 1500pN – 4000pN. If we take n ≈ 50 then we find
that 1800pN ≤ T0 ≤ 4300pN. This is consistent with Dennerll et al. who report that neurite rest
tensions vary over a broad range from 0 - 10, 000pN [3] with a mean value of 350pN. Let us now
consider the slope of the line which is D1

6nkBT . According to Lamoureux et al. the slope varies
between 0.08− 2.8µm/hr/µdyne. Taking an average value for the slope as 1.4µm/hr/µdyne we get

D1

6nkBT
=

1.4× 10−6

3600× 10−11
= 38.888 m/Ns. (28)

We tacitly assumed in the analysis above that the membrane tension remains constant even when
external force is applied on the neurite. This may not be reasonable. In fact, Dennerll et al. have
shown that the force-extension relation of PC12 neurites is linear over the range 0 ≤ T ≤ 5000pN
where the extension ∆L is given by:

∆L =
T − T0

kmem
. (29)

If we assume that the radius of the neurite remains constant for different applied tensions then we
can infer that kmem is related to the 2D shear modulus µ of the membrane. To infer this relation we
simply set T − T0 = πR2

p∆P in the following formula used in micro-pipette aspiration experiments
to determine the shear modulus of cell membranes [5].

∆L =
∆PR2

p

2.45µ
. (30)

According to Dennerll et al. the spring constant kmem varied over a range 0 ≤ kmem ≤ 1200pN/µm
with a mean value around 244pN/µm. Similarly, microtubules are also elastic objects, as assumed
by Van Veen and Van Pelt [1], and we can assume that the stiffness of n of them is kmic. For
example, if the cross-sectional area of a hollow microtubule is Amic and its Young’s modulus is E
then kmic = nEAmic. The microtubules and the membrane together support the force Tapp due to
external pressure. An elementary calculation (assuming the springs kmic and kmem are in parallel)
gives

nF = T0 −
Tapp

1 + kmem
kmic

. (31)

This can be plugged into (25) to get the growth rate as a function of the applied tension. The
linearized version of this equation is:

dL

dt
=

D1

2δ

[
1− T0δ

3nkBT
+

Tappδ

3nkBT (1 + kmem
kmic

)

]
. (32)

We expect that n ∝ πR2
p where Rp is the radius of cross-section of the neurite. This means that

F = C1−C2p where p is the pressure difference while C1 and C2 are two constants that depend on
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the membrane rest tension and material properties respectively. Thus the growth rate is a function
of p and material properties which is consistent with the analysis of Goriely and Tabor who study
the biomechanics of growth in tubular fungi [11]. Let us try to estimate kmic. The outer diameter
of a microtubule is about 25nm and inner diameter about 14nm [8]. Its flexural rigidity is about
2.2 × 10−23Nm2 [9]. From this we can estimate that EAmic ≈ 0.82 × 10−6N/m. If we assume
that n ≈ 50 [10] then 1 + kmem

kmic
= 1 + 244

50×0.82 ≈ 7. This will reduce the x-intercept in the dL
dt

vs. F straight line by a few hundred pN, but even so our estimate for the rest tension T0 remains
consistent with Dennerll et al..

It will be interesting to check what happens in the equations of Samuels et al. when we substitute
dL
dt = β where β is a constant determined from the outside tension.

dL

dt
= β, (33)

dQt

dt
=

DA

VtipL
(Qr −Qt) + β

BQr

Vtip
− β

G

Vtip
+

M

Vtip
Qr (34)

dQr

dt
=

S

Vsoma
− DA

VsomaL
(Qr −Qt)− β

BQr

Vsoma
− M

Vsoma
Qr. (35)

Surprisingly, we note that a solution in which Qr and Qt are both constants is possible only if
S = βG. Instead, if we assume

Qt(t) = C1t + C2, Qr = C2, (36)

and plug these into the differential equations above then we find:

dQt

dt
= C1 =

S − βG

Vtip − 2DA
β

, C2 =
βG− C1(DA

β − Vtip)

βB + M
. (37)

This type of solution is not predicted by the Samuels et al model or the Van Veen and Van Pelt
model. Also, as expected, when S = βG, Qt = Qr = C2. Eqn.(37) is a testable prediction of our
model which assumes diffusion limited growth. This is in contrast to the reaction limited growth
of Samuels et al. [2].
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