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Design of Membrane Micro-Flows 
The design of microfluidic transwell insert was conceptualized using the hydraulic-electrical circuit analogy based on the 

similarities of the Hagen-Poiseuille’s law for the flow of fluid and Ohm’s law for the flow of current.  For generating wide 
concentration gradients with the microfluidic transwell insert we desired a microfluidic circuit in which the flow delivered through 
the track-etched membrane was uniform along the length of the delivery microchannels.  In the ideal scenario, shown in 
Fig. A1(a), each pore of the track-etched membrane can be considered to have equal flow, so that multiplying the flow through 
an individual pore Ip by the number of pores we obtain the total membrane flow Im: 

   I! = I!ρA   (1)  
where ρ is the porosity of the membrane and A is the area of the membrane. For uniform membrane flow the delivery channel 
must be designed to have significantly less hydraulic resistance than the membrane such that the pressure applied to each pore 
is equivalent.  We can evaluate this situation by calculating the hydraulic resistances of our device.  The hydraulic resistance of 
the track-etched membrane can be calculated from the equivalent resistance of the individual pores in parallel: 
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Knowing that individual pores of the track-etched membrane are largely homogenous in diameter and length due to the track-
etching process, we assume 

   𝑅!"#$ =   𝑅! =   𝑅! =   𝑅!   (3)  
Simplifying Eq. (2) and (3) we can define the resistance of the membrane: 
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The resistance of an individual pore is calculated from the resistance of a circular pipe: 

   𝑅!"#$ =   
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     (5)  
where µ is the viscosity, L the thickness of the membrane, and R the radius of the pore.  Given the 1.0 µm pore diameter and 12 
µm thickness of a BD falcon brand track-etched membrane used for the devices, we calculate the resistance of a single pore as: 
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For the microfluidic transwell insert, the area of the membrane that receives flow from one inlet is 8 mm long and 350 µm wide 
with circular ends.  The nominal membrane area is 2.896 × 10-6 m2.  Solving Eqs. (4) and (5) using the area of the membrane 
and the porosity, 1.6×1010 pores m-2, we calculate the resistance of the membrane for one inlet as: 
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For the delivery microchannel we use the equation for the hydraulic resistance of a rectangular microchannel71: 
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Calculating Eq. (9) for w = 350 µm, h = 200 µm, and L = 8 mm, we determine that  

   𝑅! = 3.44  ×10!"
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   (10)  
Comparing the results of Eqs. (8) and (10) shows that resistance of the membrane is 3 orders of magnitude greater than the 
resistance of the delivery channel.  By this design, the pressure along the length of the delivery channel, Pmem, is insensitive to 
the flow lost through the membrane and uniform.  Therefore, we can simplify our hydraulic circuit model by ignoring the pressure 
drop in the low resistance delivery channel.  The diagram in Fig. A1(b) shows how the hydraulic circuit is simplified by this 
situation.  The actual microfluidic transwell insert shown in Fig. A2 has two inlet and delivery channels, so we can model the 
flow by combining two circuits in parallel as shown in Fig. A2.  Following a similar logic for the negligible resistance of the 
delivery channel compared to the membrane, we have designed a connection between the two inlets that is low resistance.  
This ensures that the membrane area supplied by each inlet is at the same pressure and simplifies the fluid routing with a 
common outlet.    
 While having the resistance of the delivery channels much higher than the membrane is desirable for uniform flow 
delivery, we also require non-trivial resistance at the outlet to drive enough flow through the membrane.  The pressure at the 
membrane can be defined using the conservation of energy according to Kirchhoff’s laws: 
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For our design, we have an outlet microchannel with dimensions w = 100 µm, h = 75 µm, and L = 6 mm.  Solving Eq. (9) we 
calculate the outlet resistance to be:  
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Using the analogy to Ohm’s law, we can rearrange Eq. (11) to solve: 
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The hydraulic circuit model described here predicts that 24% of the flow applied by the syringe pump will escape through the 
membrane.  
 We can extend the analysis further to describe the membrane with Darcy’s law: 
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   (14)  
where for one delivery channel, 𝐼!"! is the flow, µ is viscosity, A is area of membrane, L is thickness of the membrane, 𝑃!"! is 
the pressure drop, and k is the permeability parameter of the membrane.  Rearranging Eq. (14) using Ohm’s law we define k as: 
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Simplifying Eq. (15) further using Eqs. (7) and (8), the permeability parameter can be described as a function of the porosity and 
pore radius as follows:  
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Solving with the 1.0 µm pore diameter and porosity of 1.6×1010 pores m-2, we can calculate the permeability parameter, k = 
3.927×10-16 m2.  This parameter is important for modeling the bulk properties of the track-etched membranes since it describes 
hydraulic conductivity independent of the area and thickness of the membranes used. We used this parameter in FEM 
simulations to predict the full 3D flow and molecular transport of the microfluidic transwell devices.   

 
Fig. A1 Hydraulic circuit for microfluidic transwell flows depicting the flow network for one inlet. Syringe pump driven flow is 
indicated by Iin.  Flow entering the circuit at the inlet can either pass through the membrane or through the outlet of the device. 
(a) The membrane can be modeled as a series of parallel conduits that connect to ground in parallel with the resistance of the 
outlet microchannels.  (b) The low resistance microchannel supplying flow across the membrane is 3 orders of magnitude lower 
in resistance compared to the membrane; therefore it is negligible and each pore can be treated as the same pressure.  This 
simplifies the model to a single high resistance path in parallel with the outlet resistor.   

 
Fig. A2 Hydraulic circuit for a microfluidic transwell device with 2 inlets and a common outlet.  (a) Independent hydraulic 
networks.  (b) Each network can be connected via a low resistance bridge to establish the same pressure at each portion of the 
membrane and ensure that equal flow is delivered.   
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