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1 Equilibrium measurements

A solution of Patent Blue Violet (PBV) and a solution of a mixture of PBV and Bovine
Serum Albumine (BSA), both in Phosphate Bu�ered Saline (pH = 7.4) were circulated
in a cuvette and their �uorescence decay measured with the streak camera. The results
for [PBV] = 77 µM and [BSA] = 250 µM are shown in �gure 1. The �uorescence kinetics
of PBV could not be resolved with the streak camera which has a ∼10-ps (FWHM) wide
Instrument Response Function (IRF). The signal of the complex with BSA is more than
8 times more intense and, more importantly, shows a signi�cantly longer �uorescence
lifetime.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2- 2 0 0
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0

 

 

Flu
o. 

int
en

sity
 (a

.u.
)

t i m e  ( n s )

 P B V  7 7  µ M  [ x 8 ]
 l a s e r  ( I R F )  [ s c a l e d ]
 P B V  7 7  µ M  +  B S A  2 5 0  µ M

Figure 1: The �uorescence kinetics of PBV (black line) is not resolved and thus overlaps
with the IRF (blue dashed line). The signal of the complex with BSA is shown in red.
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2 Measurement of the droplet �ow speed

The droplets �ow speed is measured as follows. A white LED panel (Phlox SA) driven by
a function generator (DS340, Stanford Research Systems), is used to shine the micro�u-
idic chip with two 10-µs-short light pulses separated by a precisely de�ned time interval.
The transmission of this double pulse by the micro�uidic chip is recorded by a conven-
tional CCD camera (C8484, Hamamatsu) in a single image acquisition via a removable
mirror after the dichroic mirror shown in Fig. 1. The result, depicted in Fig. 2, is the
superposition of two pictures separated in time by a known delay. The displacement of
individual droplets during that delay time is measured to infer the droplet speed, which is
in turn used to calibrate the correspondence between propagation length and relaxation
time along the micro�uidic channel.

Figure 2: Droplets �owing in a 50 µm × 50 µm channel at 25 mm/s. The time interval
between both light pulses is 1 ms (left) or 1.5 ms (right).
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3 Quantitative data analysis

3.1 Fitting function

A �uorescence kinetics F (t) can be �tted by a discrete sum of exponential decaying func-
tions (amplitudes Ai, time constants τi), convoluted by the instrument response function
(IRF) R(t− t0), with t0 the time origin:

F (t) =

{
C +H(t)×

(∑
i

Aie
−t/τi

)}
⊗R(t− t0). (1)

Here C is a constant o�set (determined at negative times) and H(t) is the Heaviside
function (H(t) = 0 for t < 0; H(t) = 1 for t ≥ 0), which accounts for the fact that there
is no signal before the initial excitation by a pulse of light.

Let us assume that R(t) is a normalized gaussian function of standard deviation σ:

R(t) =
1

σ
√
2π

exp

(
− t2

2σ2

)
,

then the convolution can be analytically derived, using the error function, erf(t) :

erf(t) =
2√
π

∫ t

0

e−u
2

du.

Indeed the convolution reads:

F (t) = C +
1

σ
√
2π

∫ +∞

−∞
H(t′)

∑
i

Ai exp

(
− t
′

τi

)
exp

(
−(t− t0 − t′)2

2σ2

)
dt′. (2)

The argument of the exponential functions can be rewritten for each i:

− t
′

τi
− (t− t0 − t′)2

2σ2
= −(t− t0 − σ2/τi − t′)2

2σ2
− t− t0

τi
+

σ2

2τ 2i
.

By operating the substitution X = t′ − (t− t0 − σ2/τi), the convolution (2) reads:

F (t) = C +
1

σ
√
2π

∑
i

Ai e
σ2

2τ2
i e
− t−t0

τi

∫ +∞

−∞
H(X + (t− t0 − σ2/τi)) exp

(
−X

2

2σ2

)
dX.

which �nally yields
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F (t) = C +
∑
i

{
Ai
2

exp

(
σ2

2τ 2i

)
exp

(
−t− t0

τi

)
×
[
1 + erf

(
t− t0 − σ2/τi

σ
√
2

)] }
. (3)

Now we focus on the case where one �uorescence decay component τ is much shorter
than the time resolution σ: τ � σ. In the convolution (2), the exponential decaying
function takes non vanishing values over an interval of a few τ 's around t′ = 0 (or t′ =
τ). On that interval, the IRF varies very little and may be approximated by its Taylor
development:

with f(t′) = exp

(
−(t− t0 − t′)2

2σ2

)
(4)

f(t′) = exp

(
−(t− t0)2

2σ2

)
×
(
1 +

t− t0
σ2

t′ + . . .

)
Hence, one may write the convolution for this component in the following way:

1

σ
√
2π

∫ +∞

−∞
H(t′) A exp

(
−t
′

τ

)
exp

(
−(t− t0 − t′)2

2σ2

)
dt′ (5)

=
A

σ
√
2π

exp

(
−(t− t0)2

2σ2

)∫ +∞

0

exp

(
−t
′

τ

)(
1 +

t− t0
σ2

t′ + · · ·
)

dt′ (6)

At the zeroth order of the Taylor expansion, the convolution reads:

Aτ × 1

σ
√
2π

exp

(
−(t− t0)2

2σ2

)
, (7)

the IRF is simply multiplied by the integral A× τ of the non resolved component.
Therefore, the explicit �tting function used in this work is thus given by F (t) as de�ned

by equation (3) for the time-resolved components, plus A0 τ0 multiplied by the IRF to
account for putative non-resolved components:

S(t) = A0 τ0
1

σ
√
2π

exp

(
−(t− t0)2

2σ2

)
+ F (t) (8)

Here we note that only the product A0 τ0 may be introduced as a �tting parameter and
inferred from the �tting, while both individual parameters A0 and τ0 remain undeter-
mined.
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3.2 Global analysis

Global analysis is commonly applied to 2D datasets such as those obtained by spectrally-
and time- resolved spectroscopy experiments (�uorescence or transient absorption). Here
we follow the same lines with a 2D dataset being a chemical-time- and �uorescence-time-
resolved signal, sometimes referred to as double-kinetic experiments.

SVD. The 40 �uorescence kinetics traces are gathered into a matrix Mij = F (Ti, tj)
whose horizontal dimension i represents the (millisec. to sec.) chemical relaxation time
Ti and vertical dimension j represents the picosecond �uorescence kinetics time tj at each
time Ti of the chemical relaxation. A Singular Value Decomposition (SVD) algorithm
is applied (Scilab software) to Mij for data reduction and noise �ltering. The SVD is a
mathematical decomposition of the original Mij matrix in the form:

Mij =
∑
mn

χimSmnFnj =
∑
n

χn(Ti)snFn(tj) (9)

In this decomposition, Smn = δmnsn is a diagonal matrix composed of the (sorted)
singular values sn. The columns of the χim matrix represent a set of m = n �singular"
chemical relaxation kinetics {χn(Ti)} associated to each of the n singular values. Con-
versely, the lines of Fnj matrix represent a set of n �singular" �uorescence kinetic traces
{Fn(tj)}.

Data reduction and noise �ltering is performed by reconstructing the data set
using Equation 9 while limiting the sum over n to a few dominant singular values. Figure
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Figure 3: Singular values in logarithmic scale. The components n > 3 have a weight
lower than 1% of the dominant component and are considered to contribute to the noise
in the original dataset.
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3 plots the singular values in the present case, and we restrict the data reconstruction
to the �rst 3 singluar values. By doing so, only the singular �uorescence and chemical
kinetics corresponding to the three dominant singular values are considered to contain
relevant information while all the others are rejected as being noise. Figure 4 displays the
three corresponding singular �uorescence kinetic traces weighted by their singular values
snFn(tj), for n = 1 to 3.
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Figure 4: Singular kinetics snFn(tj) for n=1,2 and 3. Inset: same graph zoomed in in the
�rst 0.5 ns for qualitative comparison.

Global �tting is performed by �tting simultaneously the three dominant singular
�uorescence kinetics {snFn(tj), n = 1..3} by 3 �tting functions given by Eq. 8. By global
�tting, we mean that we seek the same set of time constants {τα} simultaneously in the
three singular kinetics, while the corresponding amplitudes, as well as the non-resolved
component A0τ0 are left free to adjust di�erently in each of the three kinetics. Up to
4 time-resolved components τ1,...,4 should be included in the three �tting functions, to
obtain satisfying residuals: the residuals are improved when �tting with 4 time-resolved
components instead of 3, but not anymore with 5. Fig. 5 displays the results of this
global �tting procedure for the three dominant singular �uorescence traces. To validate
our choice of rejecting singular values for n > 3, we compare the residues obtained in the
global �t to the singular �uorescence kinetics number 3 and 4 in Figure 6. The amplitudes
of the residues are smaller than that of s3F3(tj), but larger than that of s4F4(tj), s5F5(tj),
etc..., justifying a posteriori the cuto� value of n = 3.
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Figure 5: Results of the simultaneous �t of the three dominant singular �uorescence ki-
netics s1F1(tj), s2F2(tj) and s3F3(tj) by three functions (8) with 4 common time constants
and a non-resolved component A0τ0.
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Figure 6: Residues of the simultaneous �t of the 3 dominant singular �uorescence kinetics
compared to the singular kinetics s3F3(tj) and s4F4(tj). Insert: scaling for qualitative
comparison. The amplitude of the residues is similar to that of the fourth singular kinetics:
this con�rms the choice of keeping the 3 �rst singular kinetics only.

The DARK's. The conclusion of the global �tting procedure consists in reconstruct-
ing the modelled data by applying Equation 9 to the three modelled singular �uorescence
kinetics obtained by the simultaneous �t. Each of the three dominant kinetics was mod-
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elled by a sum of exponentially decaying functions with a common set of time constants
but individual sets of amplitudes:

for n = 1 to 3: snFn(tj) =
4∑

α=0

Anαe
−tj/τα .

Here for simplicity we disregard the convolution by the IRF and its consequence discussed
above on whether each component is or not time resolved; this does not change the
reasoning. We now use Eq. 9, to reconstruct the corresponding modelled data:

Mij =
3∑

n=1

χn(Ti)×
4∑

α=0

Anαe
−tj/τα (10)

=
4∑

α=0

[
3∑

n=1

χn(Ti)Anα

]
e−tj/τα (11)

Hence we can de�ne the Decay-Associated Reaction Kinetics DARK's:

DARKα(Ti) =
3∑

n=1

χn(Ti)Anα (12)

and Mij =
4∑

α=0

DARKα(Ti)e
−tj/τα (13)

It thus appears that the DARK's represent the dependence with the chemical reaction
time Ti of the amplitude of each exponential decaying function in the �uorescence decay
kinetics measured along the structural relaxation of the bimolecular complex. We notice
here that this overall global analysis leads to a model where Ti and tj are separable
variables: it may reproduce quantitatively well the data, but contains no physical input
justifying such a separation between both variables.
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