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Table S1. Mechanisms of particle lateral migration

Category Mechanism General migration 
direction*

shear gradient lift Channel wall
Dominant inertial lift

Wall effect lift Center

slip-shear lift Lagging: center
Leading: channel wallWeaker inertial lift

slip-spin lift Center

Viscoelastic flow Elastic lift Center and corners

Lift due to surface forces Center
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Deformable particle
Deformability-induced lift Center

Dean flow Secondary flow due to fluid inertia Near center: outward**
Near wall: inward**
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Grooves Secondary flow due to symmetry 
breaking

Direction of groove 
slope

B
uo

ya
nt

 
fo

rc
e

Density mismatch Inertia of particle p >  : outward**
p <  : inward**

* In the case of typical rectangular microchannel flows. 
** Outward/inward: radially outward/inward direction considering curvature of a curving channel. 



Table S2. Inertial Microfluidic Foundations
Inertial Microfluidic Foundations Analytically 

confirmed
Numerically 
confirmed

Experimentally 
confirmed

Inertial lift scales with ρU2a4/H2 for a/H≪ 1 X X O
Inertial lift scales with ρU2a3/H near the channel center for finite-size particle O X O
Inertial lift scales with ρU2a6/H4 near the channel wall for finite-size particle O X O
Four equilibrium positions in square channels O X X
Two dominant (stable) equilibrium positions in rectangular channels O X X
Slight shift of focusing positions towards the walls at increased Re O O X
Formation of new focusing streams at high length fractions (i.e. φ>~75%) due to 
particle interactions

O O X

Length required for focusing in straight channel scales as , with the average fL 

𝜋𝜇ℎ2

𝜌𝑈𝑚𝑎
2𝑓𝐿

about 0.02-0.05 for channel aspect ratios (height/width) between 2 and 0.5

X O O

Particle migration towards center or the walls in pressure-driven flow in non-
Newtonian fluid

O O X

Dependence of equilibrium position on rotational diameter and independence of cross-
sectional shape for axially symmetric particles

O O X

Deformability-induced lift near the channel center scales with Ca μUa3d/H3 X O O

For small and large λd (viscosity ratio) deformability-induced lift acts towards channel 
center, while acting towards the wall for λd~1

X O X
(not small λd)

Reversing streamlines created near a particle in confined flow X X X
Reversing streamlines create repulsive particle-particle interactions X O X
Trains of particles self-assemble due to particles interacting with the walls and with 
each other 

O O X

Finite sized particles create a net secondary flow (i.e. particle-induced convection) at 
Rp>~2

O X X

Particle equilibrium position in unaffected by the self-induced flow disturbance O O X
Particle-induced convection scales with a3, U2 and μ O X O
Curving channels can be used to achieve shorter focusing length (due to the flow 
disturbance caused by Dean flow)

X O X

Curving channels can be used to achieve single stable equilibrium positions O O X
Irregularities such as grooves, pillars, channel curvature etc. create considerable 
secondary flows 

X X X

Four dominant modes of secondary flows for inertial flow deformation around pillars O X X
Magnitude of the inertial flow deformation (secondary flow) induced by a structure O X X



depends strongly on the structure size



List of symbols
a Particle diameter

dc Length scale of change

Dmax Rotational diameter

FL Net lift

FL,d Deformability-induced lift

fL Lift coefficient

H Channel dimension

h Channel size in the dominant direction of particle migration

w Channel size in the orthogonal direction of particle migration

L Channel length

Lf Channel length required for particles to reach lateral equilibrium positions

N Number of particles

R Radius of channel curvature

d Distance between drop and center of the channel

ds Interparticle spacing

Rf Lift to dean drag force ratio (FL/FD)

U Mean channel velocity

U Velocity change  

Um Maximum channel velocity

α=a/H Channel blockage ratio

�̇� Shear rate

λ Fluid relaxation time

µ Dynamic viscosity

µd Dynamic viscosity of fluid inside a droplet

λd Viscosity ratio

ρ Density of fluid 

ρ
p Density of particle



σ Surface tension

φ= Na/L length fraction


