Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2014

Inertial Microfluidic Physics

Hamed Amini^{1,2†}, Wonhee Lee³, Dino Di Carlo^{1,2*}

1. Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, P.O. Box 951600, Los Angeles, CA, 90095,

USA.

2. California NanoSystems Institute, 570 Westwood Plaza, Building 114, Los Angeles, CA, 90095, USA.

3. Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, N5-2322 291 Daehak-Ro, YuseongGu,

Daejeon, South Korea.

† Current address: Illumina Inc., 25861 Industrial Blvd, Hayward, CA 94545, USA.

*Corresponding Author:

Dino Di Carlo, Ph.D. Associate Professor of Bioengineering University of California Los Angeles 420 Westwood Plaza 5121 Engineering V, P.O. Box 951600 Los Angeles, CA 90095-1600 Telephone: +1-310-983-3235 Fax: +1-310-794-5956 E-mail:

Table S1. Mechanisms of particle lateral migration

Category		Mechanism	General migration direction*
	Dominant inautial lift	shear gradient lift	Channel wall
	Dominant mertial int	Wall effect lift	Center
ee	Weaker inertial lift	slip-shear lift	Lagging: center Leading: channel wall
it for		slip-spin lift	Center
Lif			
	Viscoelastic flow	Elastic lift	Center and corners
		Lift due to surface forces	Center
	Deformable particle	Deformability-induced lift	Center

'ag rce	Dean flow	Secondary flow due to fluid inertia	Near center: outward** Near wall: inward**
Dr	Grooves	Secondary flow due to symmetry breaking	Direction of groove slope
Buoyant force	Density mismatch	Inertia of particle	$ \rho_p > \rho $: outward** $ \rho_p < \rho $: inward**

* In the case of typical rectangular microchannel flows.

** Outward/inward: radially outward/inward direction considering curvature of a curving channel.

Table S2. Inertial Microfluidic Foundations

Inertial Microfluidic Foundations		Numerically	Experimentally
		confirmed	confirmed
Inertial lift scales with $\rho U^2 a^4 / H^2$ for a/H $\ll 1$		X	0
Inertial lift scales with $\rho U^2 a^3/H$ near the channel center for finite-size particle		X	0
Inertial lift scales with $\rho U^2 a^6/H^4$ near the channel wall for finite-size particle		X	0
Four equilibrium positions in square channels		X	Х
Two dominant (stable) equilibrium positions in rectangular channels		X	X
Slight shift of focusing positions towards the walls at increased <i>Re</i>	0	0	X
Formation of new focusing streams at high length fractions (i.e. $\varphi > 75\%$) due to		0	Х
particle interactions			
$\pi \mu h^2$	Х	0	0
Length required for focusing in straight channel scales as $\overline{\rho U_m a^2 f_L}$, with the average f_L			
about 0.02-0.05 for channel aspect ratios (<i>height/width</i>) between 2 and 0.5			
Particle migration towards center or the walls in pressure-driven flow in non- Newtonian fluid	0	0	X
Dependence of equilibrium position on rotational diameter and independence of cross- sectional shape for axially symmetric particles		0	Х
Deformability-induced lift near the channel center scales with $Ca \mu Ua^3 d/H^3$	Х	0	0
For small and large λ_d (viscosity ratio) deformability-induced lift acts towards channel center, while acting towards the wall for $\lambda_{1,1}$		0	X (not small λ.)
Reversing streamlines created near a particle in confined flow		X	X
Reversing streamlines create repulsive particle-particle interactions		0	X
Trains of particles self-assemble due to particles interacting with the walls and with each other	0	0	X
Finite sized particles create a net secondary flow (i.e. particle-induced convection) at $R_p > 2$	0	X	Х
Particle equilibrium position in unaffected by the self-induced flow disturbance		0	Х
Particle-induced convection scales with a^3 , U^2 and μ		X	0
Curving channels can be used to achieve shorter focusing length (due to the flow		0	Х
disturbance caused by Dean flow)			
Curving channels can be used to achieve single stable equilibrium positions		0	Х
Irregularities such as grooves, pillars, channel curvature etc. create considerable secondary flows	Х	Х	Х
Four dominant modes of secondary flows for inertial flow deformation around pillars	0	X	X
Magnitude of the inertial flow deformation (secondary flow) induced by a structure		X	X

depends strongly on the structure size	depends subligity on the sublidue size
--	--

List of symbols

a	Particle diameter
d _c	Length scale of change
D _{max}	Rotational diameter
F _L	Net lift
F _{L,d}	Deformability-induced lift
f_L	Lift coefficient
Н	Channel dimension
h	Channel size in the dominant direction of particle migration
w	Channel size in the orthogonal direction of particle migration
L	Channel length
L_{f}	Channel length required for particles to reach lateral equilibrium positions
Ν	Number of particles
R	Radius of channel curvature
d	Distance between drop and center of the channel
d_s	Interparticle spacing
R_f	Lift to dean drag force ratio (F_L/F_D)
U	Mean channel velocity
ΔU	Velocity change
U_m	Maximum channel velocity
$\alpha = a/H$	Channel blockage ratio
γ	Shear rate
λ	Fluid relaxation time
μ	Dynamic viscosity
μ_d	Dynamic viscosity of fluid inside a droplet
λ_d	Viscosity ratio
ρ	Density of fluid
ρ_p	Density of particle

σ	Surface tension
$\varphi = Na/L$	length fraction