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S1 The lattice Boltzmann method

Here we explain details of our lattice Boltzmann simulations and start with
explaining the collision and streaming step.

In the collision step the fluid particles at each lattice point exchange momen-
tum by a local collision rule. Here we employ the common Bhatnagar-Gross-
Krook collision model, where the velocity distribution function relaxes towards
a local equilibrium distribution f eq

i with a single relaxation time τ . This results
in the post-collision distribution

f⋆
i (~x, t) = fi(~x) +

1

τ
[f eq

i (~x, t)− fi(~x, t)] . (S1)

For the local thermal equilibrium distribution we use an expansion of the local
Maxwell-Boltzmann distribution up to second order in the mean velocity ~u,
which results in

f eq
i = wiρ

(

1 +
~ci · ~u
c2s

+
(~ci · ~u)2
2c4s

− |~u|2
2c2s

)

. (S2)

The weights wi ensure that all moments of the equilibrium distribution up to
the third order are correctly reproduced including the number density ρ (zeroth
order) and the mean velocity ~u at lattice point ~x (first order). cs =

√

kBT/m
is the speed of sound1. Note that the collision step locally conserves mass and
momentum.

After collision the fluid particles move to adjacent lattice positions according
to their velocities and the new distribution functions at time t+∆t become

fi(~x+∆t~ci, t+∆t) = f⋆
i (~x, t). (S3)

Here we use the D3Q19 scheme1, where the velocities connect each lattice point
to its nearest and next-nearest neighbors. To simplify the following discussion,
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in the remainder of this section we set ∆x = 1 and ∆t = 1 and rescale all
quantities accordingly.

Note that on length and time scales much larger than ∆x and ∆t, respec-
tively, one can derive the Navier-Stokes equation by a Chapman-Enskog expan-
sion using the formulated streaming and collision steps1. The internal pressure
follows an ideal gas law with p = c2sρ, where cs = 1/

√
3 is the speed of sound,

and the kinematic viscosity is given by ν = c2s(τ − 1/2).
To implement the no-slip boundary condition on the channel walls, we em-

ploy the regularized boundary condition introduced by Latt and Chopard2. It
treats boundary nodes just like fluid nodes but modifies the distribution func-
tion before the collision such that the correct velocity is imposed. The method
uses the bounce-back rule for the nonequilibrium distribution introduced by Zou
and He3.

S2 Inamuro Immersed Boundary method

Wemodel the colloidal particle by the Inamuro Immersed Boundary (IB) method4

with “five iterations”. In this section we review the details of the implementa-
tion.

The colloid surface is approximated by a triangular mesh with vertices i at
positions ~xm

i . To obtain the mesh, we start from a an icosahedron and suc-
cessively refine it by splitting each triangle into four until the edge length is
smaller than the lattice spacing. The positions of the resulting vertices continu-
ously vary in space and hence do not necessarily coincide with the lattice sites.
For clarity we will denote here the lattice sites by ~xj . We couple mesh vertices
and lattice sites to each other using a smoothed delta function δh(~x). We follow
Peskin5 and employ δh(~x) = φ(x)φ(x)φ(z) with

φ(x) =















1
8

(

3− 2|x|+
√

1 + 4|x| − 4x2

)

0 ≤ |x| ≤ 1

1
8

(

5− 2|x| −
√

7 + 12|x| − 4x2

)

1 ≤ |x| ≤ 2

0 2 ≤ |x|
(S4)

and the same form for φ(y) and φ(z). In the IB method one determines the
fluid velocity ~um

i at mesh point i by interpolating the fluid velocity from the
lattice sites with the help of the smoothed delta function,

~um
i =

∑

j

δh(~x
m
i − ~xj)~uj . (S5)

To enforce the no-slip boundary condition at the colloid surface, we introduce
the penalty force ~fm

i = ~um
i −~vsi as the difference between the fluid velocity and

the surface velocity ~vsi = ~v + ~ω × (~xm
i − ~r) of the colloid at the position ~xm

i of

mesh vertex i. The penalty force ~fm
i acts on the mesh vertex i and, to conserve

momentum, its negative −~fm
i acts on the surrounding fluid. We interpolate the
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penalty force on lattice site ~xj from the neighboring mesh vertices,

~fj = −
∑

i

δh(~x
m
i − ~xj)~f

m
i . (S6)

To apply the penalty force to the fluid, we use the same method as for the
body force. We calculate modified fluid velocities at the mesh points i, which
do not obey the no-slip boundary condition exactly since we interpolate forces
and velocities between the mesh and lattice points. To decrease the slip velocity
further, we therefore refine the penalty force iteratively by repeating the proce-
dure five times and thereby implement the no-slip boundary condition in good
approximation. Note that the total penalty force experienced by the fluid and
hence by the colloid is the sum over all iterations.

As just introduced, the fluid interacts with a colloid which results in a hy-
drodynamic coupling. We can quantify it by a force and torque acting on the
colloid given by the sum of the vertex contributions just introduced,

~Ffluid =
∑

i

~fm
i (S7)

~Tfluid =
∑

i

(~xm
i − ~r)× ~fm

i . (S8)

The force and torque contain two contributions. The first one comes from
the fluid particles outside the colloid. The second contribution resulting from
fluid particles inside the colloid is unphysical. We therefore compensate this
contribution using Feng’s rigid body approximation6 and denote the respective
force and torque by ~FFeng, ~TFeng.

With all force contributions the equations of motion for the colloid are given
by

~r(t+ 1) = ~r(t) + ~v(t),

M~v(t+ 1) = M~v(t) + ~Ffluid + ~FFeng + ~Fctl, (S9)

I~ω(t+ 1) = I~ω(t) + ~Tfluid + ~TFeng,

where M and I are the respective mass and moment of inertia of the colloid
and ~Fctl is the axial control force which we will introduce in Sects. 4 and 5 of
the main text.
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