Electronic Supplementary Information (ESI) for Lab on a Chip Investigation of acoustic streaming patterns around oscillating sharp edges

Nitesh Nama,^a Po-Hsun Huang, ^a Tony Jun Huang, ^{ab} and Francesco Costanzo, ^{ac}

^a Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. E-mail: junhuang@psu.edu

^b Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA.

^c Center for Neural Engineering, The Pennsylvania state University, Univer-sity Park, PA 16802, USA. E-mail: costanzo@engr.psu.edu

I. First Order Fields:

Fig.1: (a) Plot of the first-order pressure field (b) Plot of the first-order velocity field. The channel dimensions L = 300 μ m, H = 600 μ m, α = 15⁰, and h = 200 μ m. The wall displacement was only in the y direction with magnitude 1 μ m. The plots shown are for a particular time instant since the first-order fields are time-harmonic in nature.

II. First Order Fields:

Fig.2: (a) Plot of the second-order pressure field. The channel dimensions L = 300 μ m, H = 600 μ m, α = 15°, and h = 200 μ m. The wall displacement was only in the y direction with magnitude 1 μ m.

III. Comparison of Lagrangian velocity for different frequencies:

Fig.3: Plot of the mean Lagrangian velocity, \mathbf{v}^{L} , for (a) 4.75kHz, (b) 4.75 MHz. The channel dimensions L = 300 μ m, H = 600 μ m, α = 15⁰, and h = 200 μ m. The wall displacement was only in the y direction with magnitude 1 μ m in case (a) and I nm in case (b). The wall displacement amplitude was reduced by a factor of 1000 in case (b) so that the channel walls are subject to same velocity in both the cases.

IV. Effect of Power:

Fig. 4: Experimentally observed trajectories of 1.9 μ m diameter fluorescent polystyrene beads in our acoustically oscillated micro-mixer with sharp edges for different power, (a) 10 V_{p-p}, (b) 20 V_{p-p}, (c) 30 V_p, (d) 40 V_{p-p}, (e) 50 V_{p-p} The geometry of the micro-channel is as described in Fig.1. The driven oscillation is harmonic with a frequency equal to 4.75 kHz.