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Figure SI-1: Magnetic alignment of the NPs – TEM slice cut overview.
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Figure SI-2: TEM images of the alignment of the NPs inside the micro reactor (abrupt stop at the PS 

wall).
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Figure SI-3: Light microscopy images of the Ni Mesh (A) and Ni foam (B and B´).
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Figure SI-4: Digital pictures of different elements of the microreactor chamber. A and B: Top and 

side views of the chamber with Ni mesh inside. C: Microreactor chamber with connectors.
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Figure SI-5: Fluorescence spectra of APTES-SPIONs (red), PEG-APTES-SPIONs (green), 

AlexaFluor 488 labeled APTES-SPIONs (blue), SAMSA fluorescein labeled PEG-APTES-SPIONs 

(purple) and SAMSA fluorescein (black dotted line, values divided by 10) measured at λexc=490 nm.
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Figure SI-6: Magnification of the magnetization curve of the APTES-coated SPIONs.
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Reactor type
Flow rate (mL/min)

Total Volume loaded (mL)
Circulation time (hour) 0.5 2 6 24 0.5 2 6 24 0.5 2 6 24 0.5 2 6 24

Iron Trapped (ug) 1324 1903 2394 2417 873 1559 1787 2097 669 1810 2346 2808 717 1337 1841 2439
Trap. efficiency (%) 52.1 75.7 95.6 96.5 33.9 61.7 71.0 83.5 12 32.4 42.0 50.3 27.5 52.7 73.2 97.4

Reactor type
Flow rate (mL/min)

Total Volume loaded (mL)
Circulation time (hour) 0.5 2 6 24 0.5 2 6 24 0.5 2 6 24 0.5 2 6 24

Iron Trapped (ug) 896 1732 2068 2071 868 1513 1727 1805 1081 1086 1567 2221 368 580 569 1050
Trap. efficiency (%) 34.8 68.7 82.4 82.2 33.6 60.1 69.0 70.9 19.4 19.5 28.1 39.8 13.3 22.0 21.4 41.1

Reactor type
Flow rate (mL/min)

Total Volume loaded (mL)
Circulation time (hour) 0.5 2 6 24 0.5 2 6 24 0.5 2 6 24 0.5 2 6 24

Iron Trapped (ug) 1097 1921 2366 2429 912 1558 2033 2232 445 887 2320 2552 494 555 843 2088
Trap. efficiency (%) 42.9 76.4 94.4 97.0 35.4 61.6 80.9 89.5 8.5 16.9 44.3 48.7 18.5 20.9 32.6 83.0

Version B´ - Foam 100 PPI
0.1 0.5 1
5 5 5

0.5
10.0

Version B - Foam 50 PPI
0.1 0.5 1
5 5 5

0.5
10.0

Version A - Mesh
0.1 0.5 1
5 5 5

0.5
10.0

Table SI-1 – Trapping efficiency for each version of microreactor, calculated at different flow rate 

and circulation time.
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Numerical simulations 

In order to describe in a rigorous manner the time dependence of the nanoparticles 
concentration n profile around a magnetized wire, a two-dimensional partial differential 
equation needs to be solved. Its solution allows one to monitor the kinetics of buildup 
accumulation directly, by integrating over the entire region in space where the nanoparticles 
concentration is above the bulk value. The equation to be solved is the following:
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where r is the distance from the wire center, and  is the polar angle. The magnetic interaction 
energy of a nanoparticle with a magnetized wire subject to an external magnetic field H0 is 
given by:
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while the velocity profile is given by:
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In Equation (3), V0 is the velocity of fluid at infinite distance from the wire. In both equations 
(1) and (2) and (3) the symbols are the same as in the main text. Equation (1) is subject to the 
initial condition stating that the particles concentration is initially equal to n0 everywhere, as 
well as to the following boundary conditions:
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The first of Equations \* MERGEFORMAT (1.4) states that the overall flux at the wire 
surface has to be equal to zero; while the second one imposes that the concentration of 
particles at a distance d sufficiently far away from the wire surface equals the bulk 
concentration.

Before a numerical solution, equation (1) needs to put in dimensionless form. We define: 
u=n/n0, =r/ Rw, Pe=Rw∙V0/D0  and =t∙D0/Rw

2. This leads to:
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Equation \* MERGEFORMAT (1.5) has been solved using a forth order finite difference 
scheme, as follows:
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Initially, the dependence of the diffusion coefficient (Equation (6) in the main text) and the 
correction of the osmotic pressure due to high particle concentration have been neglected. 
This leads to a linear equation, which can be discretized into a large system of ODEs, as 
follows:
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An implicit Euler method has been used to solve this system of equations.
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The equations have been solved using a home-made finite difference code programmed in 
FORTRAN (Intel FORTRAN Parallel Studio 2011). A very fine spatial grid has been utilized, 
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with up to 400000 grid points. In order to deal with the large memory occupancy resulting 
from the discretization, a sparse matrix approach has been used to store the coefficients of the 
discretized equation.

The solution of equation \* MERGEFORMAT (1.5) is highly time-consuming. Therefore it 
has only been performed for a few representative operative conditions with the objective to 
obtain a steady state concentration profile, from which an angular average effective radial 
velocity profile can be obtained. The angular average velocity has been obtained from the 
following equation:
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The values have then been then fitted by means of the semi-empirical expression (7) reported 
in the main text.

Having an angular average velocity, together with the angular average magnetic energy, 
defined by Equation (6) in the main text, allows one to solve the one dimensional and steady 
state version of the diffusion-convection equation, Equation (4) in the main text. Its solution 
provides an angular average concentration profile, which allows the estimation of the amount 
of particles accumulated around a wire under a given condition. A critical distance r* is 
estimated, as the value such that the amount of particles accumulated around a wire is equal to 
a given amount.

The rate of trapping K, appearing in Equations (1) e (2), is estimated as follows:
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This implies that is assumed that the build-up, i.e., the amount of particles accumulated 
around the wires, is increasing in a layer-by-layer fashion. Therefore, when the amount of 
particles reaches the maximum possible under certain conditions, the rate of trapping K equals 
zero.


