Supplementary information

Fig. S1 Current values and calculated bubble (hydrogen) generation by electrolysis, following Faraday's Second Law of Electrolysis (extraction flow rate, 2 μ l min⁻¹ with 0.1x PBS).

<Faraday's Second Law of Electrolysis>

$$m = (Q F^{-1}) (M z^{-1})$$

- m (g): the mass of the substance liberated at an electrode, in grams
- Q (C): the total electric charge passed through the substance
- F (C mol⁻¹): Faraday constant
- M (g mol⁻¹): the molar mass of the substance
- z: valency (number of ions of the substance)

Fig. S2 (a) Schematic images showing the sequential fabrication steps for incorporating ion-permselective chan nels onto a microfluidic network. (b) Phase-contrast microscope images of different coating properties obtained in the absence and presence of the cover. Scale bar, 200 μm.

Fig. S3 Activating conditions for the three different phases under various electric fields and extraction flow rates. Region A, B, and C indicate drag, focusing, and depletion barrier phase, respectively.

Stokes' drag force		Electrophoretic force[1]			
$F_D = 6\pi\mu Rv$		$F_{\rm EP} = 6\pi \zeta_{\rho} \mathcal{E}_f \mathrm{aE}$			
μ: dynamic viscosity (N S m ⁻²)	0.001	ζ_{ρ} : zeta potential (mV)	-3.56		
R : radius of particle (nm)	100	\mathcal{E}_f : electrical permittivity (C V ⁻¹ m ⁻¹)	6.9 * 10 ⁻¹⁰		
v : velocity of fluid (mm s ⁻²)	$\begin{array}{c} 2.78 \sim 5.56 \\ (1 \sim 2 \ \mu l \ m^{-1}) \end{array}$	a : spherical particle radius (nm)	100		
		E : electric field (V cm ⁻¹)	40 ~ 100		
F _D (N)	2.62 ~ 5.24*10 ⁻¹¹	F _{EP} (N)	0.88 ~ 2.21 * 10 ⁻¹³		

Table S1 Comparison of Stokes' drag force (F_D) and electrophoretic force (F_{EP})

		0 min	5 min	10 min	15 min
Single channel	Remaining volume (theoretical value)	100	96.0	91.0	86.0
Extraction flow rate - : 2 μl min ⁻¹	Concentration fold (theoretical value)	1.00	1.04	1.10	1.16
Multichannel	Remaining volume (theoretical value)	100	79.8	54.9	29.9
Extraction flow rate :10 μl min ⁻¹ _	Concentration fold (theoretical value)	1	1.25	1.82	3.35
	Concentration fold (experimental value)	1	1.04	1.74	3.86

Table S2 Theoretical and experimental values for remaining sample volume and concentration of sample after li quid drainage during depletion-barrier phase.

Reference

[1] Hyoung Kang K, Xuan X, Kang Y, Li D. Effects of dc-dielectrophoretic force on particle trajectories in micr ochannels. Journal of applied physics. 2006;99:064702--8.