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MATLAB code for detection of malaria parasites in microscopy images after staining in cartridge 
 
To duplicate the image processing algorithm utilized in this report, a new .m filed titled 
“countParasitesAndRBCsInAOImages.m” should be created, and the following code copied and pasted 
into it. There may be slight adjustments required if line breaks do not match up correctly after pasting.  
This script was tested on MATLAB 2013a with the image processing toolbox. Two images are also 
included in SI, one of which is an example image that can be directly extracted from the PDF and utilized 
as a test image for future code development, the other of which is the output of the script below on that 
image. Run the code by calling the function in MATLAB as: 
countParasitesAndRBCsInAOImages(‘filename.jpg’,1)  
 
Additionally, a more detailed technical description of the algorithm than that provided in the methods 
section is provided: 
 
The image-processing algorithm has two goals: To detect parasites, and to count red blood cells (RBCs). 
Parasites:  
 
The targeted parasite signature is a bright orange blob (stained DNA) in close proximity to a bright green 
blob (stained RNA).  Given channels R, G, and B, and pixels p, a ‘bright orange’ binary image is created 
by masking the red channel R with: {p:R(p) > Rthresh && R(p) > G(p)} = 1, where Rthresh is an 
adaptive threshold Rthresh = median(R) + 2*stdDev(R). Similarly, a ‘bright green’ binary image is 
created by masking the green channel G with: {p: G(p) > Gthresh && G(p) > R(p)} = 1, where Gthresh = 
median(G) + 2*stdDev(G). Both masked images are filtered to remove overly large blobs and single pixel 
noise.  
 
To find orange and green regions that are close together, the orange masked image is dilated. Dilation is 
an operation on binary images in which a disc is placed on each 1-valued pixel in turn, and all pixels 
within the disc are converted to 1’s. The effect is to increase the size of the 1-valued regions by adding a 
margin around them. Parasite locations are represented by the overlap of the two images: {dilated masked 
orange image = 1} && {masked green image = 1}. 
 
Red blood cells:  
The cell walls of RBCs stain pale green, while their interiors are typically dark. The cell walls are 
captured in a binary ‘green’ image by first histogram-equalizing the green channel G, then masking G 
with: {p: G(p) > localGthresh} = 1, where localGthresh = 1.1*median(G) is calculated in smaller squares 
that partition the image. The purpose of the partition is to minimize the effect of large green artifacts. 
Median filters eliminate scattered pixel noise. The image is then reversed, so that cell walls are black and 
cell interiors are white.  
 
The cell interiors are separated by eroding the image. Erosion is an operation on binary images whereby a 
disc is placed on each {0} pixel in turn; all pixels within the disc are converted to 0’s. The effect is to 
decrease the size of the 1-valued regions by removing their border areas; in this case cell interiors 
connected by noise are effectively separated. The cell interiors are then solidified (so that each cell 
interior is a single connected region) by dilation using a smaller disc. The number of distinct connected 
regions is taken to be the number of RBCs. 
 
% This function counts the number of parasites and number of RBCs in an 
% Acridine Orange image. It assumes that the cell walls are brighter green 
% than the cell interiors. It does not distinguish between empty space and 
% cell interior. 
% inputs:  



%      filename = image filename (including path if needed) 
%      showImagesBoolean:   if True, 2 images will be shown: the original,  
%                           and a greyscale with the estimated locations of 
%                           parasites and RBCs. Yellow circles are parasites. 
%                           A double circle implies 2 parasites close  
%                           together. 
%                           Red crosses are RBCs. 
% outputs: 
%      number of parasites, and number of RBCs. 
%  
% This function requires the image processing toolbox, and was tested  
% with MATLAB 2013a 
% 
% Written by Charles Delahunt,   26 August 2013 
  
function [numParasites, numRBCs] = countParasitesAndRBCsInAOImages(filename, 
showImagesBoolean) 
  
% load image: 
[~,~,imType] = fileparts(filename); 
imType = imType(2:end); 
im = imread(filename,imType); 
  
% parasites: 
% method: get greenish-yellow blobs and orange blobs, then see if any are  
% the right size and close to each other 
% green-yellow = 150,250,0.  (image is basically 2 color) 
% orange = 240,170,0 
  
% basic processing: 
imR = im(:,:,1); 
imR = double(imR); 
imR = imR/max(imR(:)); 
imG = im(:,:,2); 
imG = double(imG); 
imG = imG/ max(imG(:)); 
thrParam = 0.3; % used to set thresholds for R and G channel images 
  
% isolate orange: 
% threshold image:  
thR = median (imR(:)) + thrParam*(max(imR(:)) - median(imR(:))); 
imThR = imR; 
imThR(imThR < thR | imR < imG) = 0;  % ie require that red > green to keep 
  
% isolate green-yellow: 
thG = median (imG(:)) + thrParam*(max(imG(:)) - median(imG(:))); 
imThG = imG; 
imThG(imThG < thG | imG < imR) = 0;  % ie require that green > red to keep 
  
% We want to find green pixels (ie from imThG) that are close to orange  
% pixels (ie from imThR). Do this by taking a binary image of imThR, then  
% dilating it with a large disc to  give an image of pixels in the  
% neighborhood of orange pixels. 
  
temp = ones(size(imThR)); 



temp (imThR == 0) = 0; 
temp = imerode(temp, strel('disk',2)); % kill single pixels 
seC = strel('disk',25); 
imDilateR = imdilate(temp, seC); 
  
% get the overlap of the green channel and the dilated orange channel: 
imGoodG = imThG; 
imGoodG(imThG == 0 | imDilateR == 0) = 0; 
  
% threshold the results in order to separate candidates: 
imGoodThresh = 0.45; 
imGoodG(imGoodG < imGoodThresh) = 0; 
  
% use a binary image to count blobs. Reject small blobs 
imGoodBin = zeros(size(imGoodG)); 
imGoodBin(imGoodG > 0) = 1; 
cc = bwconncomp(imGoodBin); 
paraStats = regionprops(cc,'Area', 'Centroid'); 
  
parasiteThresh = 60; % reject blobs below this size. 60 to 80 works. 
paraAreas = [paraStats.Area]; 
  
numParasites = sum(paraAreas > parasiteThresh); 
parasiteSizeThresh = 800; 
numDoubles = sum(paraAreas > parasiteSizeThresh);  
% ie this blob is too big to be just one parasite. 
% detect pairs of blobs corresponding to just one parasite:  
% is distance between centroids is less than 25: 
paraKeep = paraStats(paraAreas > parasiteThresh); 
count = 0; 
for i = 1:size(paraKeep,1), 
    temp = paraKeep(i).Centroid; 
    for j = 1:size(paraKeep,1), 
        temp2 = paraKeep(j).Centroid; 
        if norm(temp - temp2) > 0 && norm(temp - temp2) < 25, 
            count = count + 1; 
        end 
    end 
end 
numDuplicates = count/2;  
% divide by two since each neighboring pair is counted twice. 
numParasites = numParasites + numDoubles - numDuplicates; % this is output 
  
%-------------------------------------------------------------------------- 
 
%  RBCs: 
  
% detect cell walls: 
  
% remove bright areas: 
imG1 = imG; 
thG2 = median (imG(:)) + 0.6*(max(imG(:)) - median(imG(:))); 
imG1(imG > thG*0.9) = median(imG(:)); 
  
imG2 = adapthisteq(imG1); 



  
% do local median thresholding on a partition into squares of size 
2*'border': 
border = 20; 
wallIm = zeros(size(imG2)); 
for i = [1+border:2*border:size(imG,1)-border,  size(wallIm,1)-border] 
    for j = [1+border:2*border:size(imG,2)-border, size(wallIm,2)-border] 
        temp = imG2(i-border:i+border,j-border:j+border);  
        temp(temp < median(temp(:))*1.1) = 0; 
        wallIm(i-border:i+border,j-border:j+border) = temp; 
    end 
end 
 % do right hand edge: 
   temp = imG2(i-border:i+border,j-border:j+border);  
        temp(temp < median(temp(:))*1.1) = 0; 
        wallIm(i-border:i+border,j-border:j+border) = temp; 
 % do bottom edge: 
  
% do repeated median filters to clarify image: 
wallIm2 = medfilt2(wallIm); 
wallIm2 = medfilt2(wallIm2); 
wallIm2 = medfilt2(wallIm2); 
  
% open the image to separate cells 
wallIm3 = zeros(size(wallIm)); 
wallIm3(wallIm2 == 0) = 1; 
seD = strel('disk',5); 
wallIm3 = imopen(wallIm3, seD); 
seE = strel('disk',2); 
wallIm3 = imclose(wallIm3,seE); 
  
% count the number of blobs (RBCs): 
cc = bwconncomp(wallIm3); 
rbcStats = regionprops(cc,'Area','FilledArea', 'FilledImage', 'Centroid'); 
  
rbcAreas = [rbcStats.Area]; 
rbcKeep = rbcStats(rbcAreas > 2000);  % kill small spots 
numRBCs = size(rbcKeep,1); % this is an output 
  
%------------------------------------------------------------------- 
  
% plot results 
% plot estimated cell centers: 
if showImagesBoolean, 
    figure, hold on,  
    imshow (im), title(filename) 
    figure,  
    imshow(imG) 
    % mark parasites: 
    for i = 1:size(paraKeep), 
        if paraKeep(i).Area > parasiteThresh, 
            figure(2), hold on,  
            xy = paraKeep(i).Centroid;  
            a = paraKeep(i).Area; 
            viscircles([xy(1), xy(2)], 25, 'EdgeColor', 'y');  



            if a > parasiteSizeThresh, 
                viscircles([xy(1), xy(2)], 35, 'EdgeColor', 'y'); 
            end 
        end, 
    end 
   % mark RBCs: 
    for i = 1:size(rbcKeep,1), 
            xy = rbcKeep(i).Centroid; 
            x(i) = xy(1); 
            y(i) = xy(2); 
    end 
    hold on, plot(x,y,'r+') 
end 
    title(['Estimated numParasites = ' num2str(numParasites) '.        
Estimated numRBCs = ' num2str(numRBCs)])  
%----------------------------------------------------------------------     
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