
Supplem
Stainin
Window

Matthew

Typical t

The cartri
smears. A

Figure S
microscop

Optimiza

Concentra
0.06 X) ar

Figure S
visualizat
permit cel
methods s

mentary I
ng of Mal
w

w P. Hornin

hick and thin

idge is inten
An example im

1 – A typica
pist. The thick

ation of stain

ation of stain
re shown.

2 – Stain co
ion of both R
ll counting. S
section.

Informatio
laria Para

g, Charles D

n smear, as m

ded to duplic
mage of such

al thick and
k smear is the

 concentratio

n greatly aff

oncentration i
RNA and DNA
Stain concentr

on - A Pap
asites wit

Delahunt, R

manually pre

cate the utilit
a manually pr

thin blood s
e circle on the

on

fects the fina

is varied to
A within para
ration is repor

per Micro
h an Opt

Ryan Singh,

epared

ty provided b
repared smea

smear as pre
e left, and the

al image qua

reduce backg
asites, while s
rted as a fract

ofluidic Ca
tically Tr

Spencer H.

by manually
ar on a micros

epared on a m
 thin smear is

ality. Examp

ground signa
still leaving th
tion of the sat

artridge fo
ransparen

. Garing, K

prepared thi
scope slide is

microscope s
s the gradient

le non-optim

al to a level
he outlines of
turated solutio

or Autom
nt Microsc

Kevin P. Nich

ick and thin
shown.

slide by an e
on the right.

mal images (a

that permits
f the RBC int
on described

ated
copy

hols*

blood

expert

above

clear
tact to
in the

Electronic Supplementary Material (ESI) for Lab on a Chip.
This journal is © The Royal Society of Chemistry 2014

Cutting p

The SI ac
using an
horizontal
placed bet

Microsco

An adapt
microscop
printed an
printing fo

Figure S3
adapter.

pattern for p

ccessible SVG
eCraft Electr
l cutting line
tween two sh

ope slide adap

ter was usefu
pe stage, and
nd utilized. A
foundries.

3 – The 3D

aper

G file “cuttin
ronic Die Cu
e) should be v
heets of card s

pter.

ul to prevent
to allow the

An STL file i

printed slide

ng_guide.svg,
tter (Craftwe
verified to be

stock, and cut

t the clips ut
stage clamps
s included w

adapter, as u

” can be used
ell, USA). Th
e 27.94 cm.
t with a depth

tilized to com
to grip the ca
ith SI to aid

utilized. An

d directly to
he width of th
In the eCraft

h of 7 (arbitrar

mpress the s
artridge. Figu
in duplicatio

STL file is a

duplicate the
the file (the l
ft die cutter, p
ry units).

slide from in
ure S2 shows
on of this piec

available in S

e paper patter
length of the
paper towels

nterfering wit
the adapter,

ce via extern

SI to duplica

rn cut
long,

 were

th the
as 3D

nal 3D

ate the

MATLAB code for detection of malaria parasites in microscopy images after staining in cartridge

To duplicate the image processing algorithm utilized in this report, a new .m filed titled
“countParasitesAndRBCsInAOImages.m” should be created, and the following code copied and pasted
into it. There may be slight adjustments required if line breaks do not match up correctly after pasting.
This script was tested on MATLAB 2013a with the image processing toolbox. Two images are also
included in SI, one of which is an example image that can be directly extracted from the PDF and utilized
as a test image for future code development, the other of which is the output of the script below on that
image. Run the code by calling the function in MATLAB as:
countParasitesAndRBCsInAOImages(‘filename.jpg’,1)

Additionally, a more detailed technical description of the algorithm than that provided in the methods
section is provided:

The image-processing algorithm has two goals: To detect parasites, and to count red blood cells (RBCs).
Parasites:

The targeted parasite signature is a bright orange blob (stained DNA) in close proximity to a bright green
blob (stained RNA). Given channels R, G, and B, and pixels p, a ‘bright orange’ binary image is created
by masking the red channel R with: {p:R(p) > Rthresh && R(p) > G(p)} = 1, where Rthresh is an
adaptive threshold Rthresh = median(R) + 2*stdDev(R). Similarly, a ‘bright green’ binary image is
created by masking the green channel G with: {p: G(p) > Gthresh && G(p) > R(p)} = 1, where Gthresh =
median(G) + 2*stdDev(G). Both masked images are filtered to remove overly large blobs and single pixel
noise.

To find orange and green regions that are close together, the orange masked image is dilated. Dilation is
an operation on binary images in which a disc is placed on each 1-valued pixel in turn, and all pixels
within the disc are converted to 1’s. The effect is to increase the size of the 1-valued regions by adding a
margin around them. Parasite locations are represented by the overlap of the two images: {dilated masked
orange image = 1} && {masked green image = 1}.

Red blood cells:
The cell walls of RBCs stain pale green, while their interiors are typically dark. The cell walls are
captured in a binary ‘green’ image by first histogram-equalizing the green channel G, then masking G
with: {p: G(p) > localGthresh} = 1, where localGthresh = 1.1*median(G) is calculated in smaller squares
that partition the image. The purpose of the partition is to minimize the effect of large green artifacts.
Median filters eliminate scattered pixel noise. The image is then reversed, so that cell walls are black and
cell interiors are white.

The cell interiors are separated by eroding the image. Erosion is an operation on binary images whereby a
disc is placed on each {0} pixel in turn; all pixels within the disc are converted to 0’s. The effect is to
decrease the size of the 1-valued regions by removing their border areas; in this case cell interiors
connected by noise are effectively separated. The cell interiors are then solidified (so that each cell
interior is a single connected region) by dilation using a smaller disc. The number of distinct connected
regions is taken to be the number of RBCs.

% This function counts the number of parasites and number of RBCs in an
% Acridine Orange image. It assumes that the cell walls are brighter green
% than the cell interiors. It does not distinguish between empty space and
% cell interior.
% inputs:

% filename = image filename (including path if needed)
% showImagesBoolean: if True, 2 images will be shown: the original,
% and a greyscale with the estimated locations of
% parasites and RBCs. Yellow circles are parasites.
% A double circle implies 2 parasites close
% together.
% Red crosses are RBCs.
% outputs:
% number of parasites, and number of RBCs.
%
% This function requires the image processing toolbox, and was tested
% with MATLAB 2013a
%
% Written by Charles Delahunt, 26 August 2013

function [numParasites, numRBCs] = countParasitesAndRBCsInAOImages(filename,
showImagesBoolean)

% load image:
[~,~,imType] = fileparts(filename);
imType = imType(2:end);
im = imread(filename,imType);

% parasites:
% method: get greenish-yellow blobs and orange blobs, then see if any are
% the right size and close to each other
% green-yellow = 150,250,0. (image is basically 2 color)
% orange = 240,170,0

% basic processing:
imR = im(:,:,1);
imR = double(imR);
imR = imR/max(imR(:));
imG = im(:,:,2);
imG = double(imG);
imG = imG/ max(imG(:));
thrParam = 0.3; % used to set thresholds for R and G channel images

% isolate orange:
% threshold image:
thR = median (imR(:)) + thrParam*(max(imR(:)) - median(imR(:)));
imThR = imR;
imThR(imThR < thR | imR < imG) = 0; % ie require that red > green to keep

% isolate green-yellow:
thG = median (imG(:)) + thrParam*(max(imG(:)) - median(imG(:)));
imThG = imG;
imThG(imThG < thG | imG < imR) = 0; % ie require that green > red to keep

% We want to find green pixels (ie from imThG) that are close to orange
% pixels (ie from imThR). Do this by taking a binary image of imThR, then
% dilating it with a large disc to give an image of pixels in the
% neighborhood of orange pixels.

temp = ones(size(imThR));

temp (imThR == 0) = 0;
temp = imerode(temp, strel('disk',2)); % kill single pixels
seC = strel('disk',25);
imDilateR = imdilate(temp, seC);

% get the overlap of the green channel and the dilated orange channel:
imGoodG = imThG;
imGoodG(imThG == 0 | imDilateR == 0) = 0;

% threshold the results in order to separate candidates:
imGoodThresh = 0.45;
imGoodG(imGoodG < imGoodThresh) = 0;

% use a binary image to count blobs. Reject small blobs
imGoodBin = zeros(size(imGoodG));
imGoodBin(imGoodG > 0) = 1;
cc = bwconncomp(imGoodBin);
paraStats = regionprops(cc,'Area', 'Centroid');

parasiteThresh = 60; % reject blobs below this size. 60 to 80 works.
paraAreas = [paraStats.Area];

numParasites = sum(paraAreas > parasiteThresh);
parasiteSizeThresh = 800;
numDoubles = sum(paraAreas > parasiteSizeThresh);
% ie this blob is too big to be just one parasite.
% detect pairs of blobs corresponding to just one parasite:
% is distance between centroids is less than 25:
paraKeep = paraStats(paraAreas > parasiteThresh);
count = 0;
for i = 1:size(paraKeep,1),
 temp = paraKeep(i).Centroid;
 for j = 1:size(paraKeep,1),
 temp2 = paraKeep(j).Centroid;
 if norm(temp - temp2) > 0 && norm(temp - temp2) < 25,
 count = count + 1;
 end
 end
end
numDuplicates = count/2;
% divide by two since each neighboring pair is counted twice.
numParasites = numParasites + numDoubles - numDuplicates; % this is output

%--

% RBCs:

% detect cell walls:

% remove bright areas:
imG1 = imG;
thG2 = median (imG(:)) + 0.6*(max(imG(:)) - median(imG(:)));
imG1(imG > thG*0.9) = median(imG(:));

imG2 = adapthisteq(imG1);

% do local median thresholding on a partition into squares of size
2*'border':
border = 20;
wallIm = zeros(size(imG2));
for i = [1+border:2*border:size(imG,1)-border, size(wallIm,1)-border]
 for j = [1+border:2*border:size(imG,2)-border, size(wallIm,2)-border]
 temp = imG2(i-border:i+border,j-border:j+border);
 temp(temp < median(temp(:))*1.1) = 0;
 wallIm(i-border:i+border,j-border:j+border) = temp;
 end
end
 % do right hand edge:
 temp = imG2(i-border:i+border,j-border:j+border);
 temp(temp < median(temp(:))*1.1) = 0;
 wallIm(i-border:i+border,j-border:j+border) = temp;
 % do bottom edge:

% do repeated median filters to clarify image:
wallIm2 = medfilt2(wallIm);
wallIm2 = medfilt2(wallIm2);
wallIm2 = medfilt2(wallIm2);

% open the image to separate cells
wallIm3 = zeros(size(wallIm));
wallIm3(wallIm2 == 0) = 1;
seD = strel('disk',5);
wallIm3 = imopen(wallIm3, seD);
seE = strel('disk',2);
wallIm3 = imclose(wallIm3,seE);

% count the number of blobs (RBCs):
cc = bwconncomp(wallIm3);
rbcStats = regionprops(cc,'Area','FilledArea', 'FilledImage', 'Centroid');

rbcAreas = [rbcStats.Area];
rbcKeep = rbcStats(rbcAreas > 2000); % kill small spots
numRBCs = size(rbcKeep,1); % this is an output

%---

% plot results
% plot estimated cell centers:
if showImagesBoolean,
 figure, hold on,
 imshow (im), title(filename)
 figure,
 imshow(imG)
 % mark parasites:
 for i = 1:size(paraKeep),
 if paraKeep(i).Area > parasiteThresh,
 figure(2), hold on,
 xy = paraKeep(i).Centroid;
 a = paraKeep(i).Area;
 viscircles([xy(1), xy(2)], 25, 'EdgeColor', 'y');

 if a > parasiteSizeThresh,
 viscircles([xy(1), xy(2)], 35, 'EdgeColor', 'y');
 end
 end,
 end
 % mark RBCs:
 for i = 1:size(rbcKeep,1),
 xy = rbcKeep(i).Centroid;
 x(i) = xy(1);
 y(i) = xy(2);
 end
 hold on, plot(x,y,'r+')
end
 title(['Estimated numParasites = ' num2str(numParasites) '.
Estimated numRBCs = ' num2str(numRBCs)])
%--

Example

Figure S4
directly u
countPara

image of par

4 - This ima
using softwar
asitesAndRBC

rasites:

age can be ex
re such as A
CsInAOImage

xtracted from
Adobe Illustra

es script with

m the PDF fil
ator) and use
h.

le (either by
ed to create a

taking a scr
a new .jpg f

reen shot, or
file for testin

more
ng the

Output re

Figure S5
example i

esults from co

5 - The expec
image in Figu

ountParasite

cted output fro
ure S2.

esAndRBCsI

om running th

nAOImages

he countParas

script

sitesAndRBCCsInAOImagees script on thhe

