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1. Dissolution of a spherical bubble of single gas component in infinite liquid phase

Assume that there is a stationary spherical gas bubble in infinite liquid phase. Since the bubble is
spherical, diffusion of gas into the liquid phase can be considered as one dimensional (radial only).
Without considering surface tension and the liquid pressure change in the channel flow, the bub

ble radius change in time is!,
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Cs is the mass concentration of CO;, in the bubble, Co is the initial mass concentration of CO,int
he liquid, and P and D are the mass density and the diffusivity of CO,, respectively. Together wit
h the ideal gas law and considering surface tension and liquid pressure changes,
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and the radius change in time can be obtained.
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Figure S1 Radius change of a CO, bubble in an infinite liquid phase. When there is no other gas in the liq
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uid phase, a CO, bubble of initial radius %= 15 um disappears within 20 ms.



2. Soluble amount of CO, in the channel

d

Figure S2 CO, bubble in a liquid box. The initial bubble radius is %0 = 15 HM and the dimension of the 1
iquid box are d = 150 um, w =150 um, and h = 38 um regpectively.

The CO; solubility in pure water is 1.7 g per 1 kg of water?. Initially, the volume of liquid in the
box (Figure S2) is
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Assuming that the density of liquid phase is the pure water value, P = 997 kg/m?, then the initial
liquid mass is

Mg =pVye=85ug, (S2)

and the mass of CO; soluble in this amount of liquid is 1.44 ng.

M., = %4 ,
The initial mass of CO, in the bubble is €0y pCOZ Bubble” o nd the density pCOZ can be obtain

ed from the ideal gas law. When the liquid flow rate in the channel is @ =25 pL/min, the initial p
ressure in the bubble is
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Dpunsie(0) = P,(0) + a—’; =- % + Py + a_); — 1.29x 10° Pa, (s3)

where U is the viscosity of the liquid and B is a constant that can be determined by the geometry

of the cross-section of the channel. p.(0) in equation (S3) will be explained in the next section.
The corresponding density of CO, in the bubble is

M -
Pco, = PBubble(O)ﬁ = 0.1g/m3 = 10~ ug/um®. (S4)
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Therefore, the initial mass of CO; in the system is

. _ _ ~12
- Mco2 = pCOZVBubble =143x10 “g, (S5)

which is ~10-3 of the soluble CO, mass in the liquid phase. Since the soluble mass is much larger
than actual mass of CO, in the bubble, no saturation is expected in the microfluidic channel.

3. Liquid pressure in the channel flow
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Figure S3 Flow in the rectangular channel. Liquid pressure gradient is constant along the channel, and the
width and height of the channel are W = 150 um, and h = 38 um regpectively. Also, the origin of the axes
is at the center of the cross-section of the channel.

In our microfluidic channel, liquid pressure gradient per unit length is constant. Therefore, liquid
flow in such rectangular channel follows

~dx’ (S6)

where y, u, and PL are, respectively, liquid viscosity, flow velocity, and liquid pressure.

Solving the partial differential equation with no-slip boundary conditions gives the velocity profi
le of the liquid flow, and thus the corresponding flow rate ¢ for 0 < h/w <1 can be written as3
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Let (V) the average velocity of the flow, then
=2, (s8)

and

dp, 1 dPL_ whdp;

de W) dt ~ Q dt - (59)
Substituting € in equation (S9) with (S7) gives,
ddpL _ 125%2 1 _ ﬁ%Q: .
t  wh 9(7;25_)(1/_}‘11)_1] wh (S10)
Given that the channel length is L, the liquid pressure can be written as
pL=%};—L(x—L)+patm=det—L(t—(%))+pam, (S11)

where Patm s the atmospheric pressure at the outlet of the channel. Therefore, substituting equati
on (S10) into (S11) gives the liquid pressure equation:
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