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1. Dissolution of a spherical bubble of single gas component in infinite liquid phase

Assume that there is a stationary spherical gas bubble in infinite liquid phase. Since the bubble is 
spherical, diffusion of gas into the liquid phase can be considered as one dimensional (radial only).
 Without considering surface tension and the liquid pressure change in the channel flow, the bub
ble radius change in time is1,

𝑑𝑎
𝑑𝑡 =‒

𝐷(𝑐𝑠 ‒ 𝑐∞)
𝜌  {1

𝑎 + 1
𝜋𝐷𝑡} . (S1)

is the mass concentration of CO2 in the bubble,  is the initial mass concentration of CO2 in t𝑐𝑠 𝑐∞

he liquid, and  and  are the mass density and the diffusivity of CO2, respectively. Together wit𝜌 𝐷
h the ideal gas law and considering surface tension and liquid pressure changes,

𝑑𝑎
𝑑𝑡 =‒

𝑎
3

𝑑𝑝𝐿
𝑑𝑡 + 𝐷𝑅𝑔𝑇(𝑐𝑠 ‒ 𝑐∞){1

𝑎 + 1
𝜋𝐷𝑡}

(𝑝𝐿 + 4𝛾
3𝑎)   , (S2)

and the radius change in time can be obtained.

Figure S1 Radius change of a CO2 bubble in an infinite liquid phase. When there is no other gas in the liq
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uid phase, a CO2 bubble of initial radius  15 μm disappears within 20 ms.𝑎0 =
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2. Soluble amount of CO2 in the channel

Figure S2 CO2 bubble in a liquid box. The initial bubble radius is , and the dimension of the l𝑎0 = 15 𝜇𝑚

iquid box are and  respectively.𝑑 = 150 𝜇𝑚,  𝑤 = 150 𝜇𝑚, ℎ = 38 𝜇𝑚

The CO2 solubility in pure water is 1.7 g per 1 kg of water2. Initially, the volume of liquid in the 
box (Figure S2) is

𝑉𝑙𝑖𝑞 = 𝑉𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ‒ 𝑉𝐵𝑢𝑏𝑏𝑙𝑒 = 𝑑ℎ𝑤 ‒ 4
3𝜋𝑎0

3 = 8.5 × 105 𝜇𝑚3 . (S1)

Assuming that the density of liquid phase is the pure water value,  997 kg/m3, then the initial 𝜌 =
liquid mass is 

𝑀𝑙𝑖𝑞 = 𝜌𝑉𝑙𝑖𝑞 =  8.5 𝜇𝑔 , (S2)

and the mass of CO2 soluble in this amount of liquid is 1.44 ng. 

The initial mass of CO2 in the bubble is  and the density  can be obtain
𝑀𝐶𝑂2

= 𝜌𝐶𝑂2
𝑉𝐵𝑢𝑏𝑏𝑙𝑒 , 𝜌𝐶𝑂2

ed from the ideal gas law. When the liquid flow rate in the channel is Q = 25 μL/min, the initial p
ressure in the bubble is 

𝑝𝐵𝑢𝑏𝑏𝑙𝑒(0) = 𝑝𝐿(0) + 2𝛾
𝑎0

=‒ 𝜇𝑄𝛽𝐿
𝑤ℎ3 +  𝑝𝑎𝑡𝑚 + 2𝛾

𝑎0
=  1.29 × 105  𝑃𝑎 , (S3)

where  is the viscosity of the liquid and  is a constant that can be determined by the geometry 𝜇 𝛽

of the cross-section of the channel.  in equation (S3) will be explained in the next section. 𝑝𝐿(0)

The corresponding density of CO2 in the bubble is

𝜌𝐶𝑂2
= 𝑝𝐵𝑢𝑏𝑏𝑙𝑒(0)

𝑀𝑤
𝑅𝑔𝑇 = 0.1𝑘𝑔 𝑚3 =  10 ‒ 10 𝜇𝑔/𝜇𝑚3 . (S4)
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Therefore, the initial mass of CO2 in the system is

∴ 𝑀𝐶𝑂2
=  𝜌𝐶𝑂2

𝑉𝐵𝑢𝑏𝑏𝑙𝑒 = 1.43 × 10 ‒ 12 𝑔 , (S5)

which is ~10-3 of the soluble CO2 mass in the liquid phase. Since the soluble mass is much larger 
than actual mass of CO2 in the bubble, no saturation is expected in the microfluidic channel.  

3. Liquid pressure in the channel flow

Figure S3 Flow in the rectangular channel. Liquid pressure gradient is constant along the channel, and the 
width and height of the channel are and  respectively. Also, the origin of the axes 𝑤 = 150 𝜇𝑚, ℎ = 38 𝜇𝑚
is at the center of the cross-section of the channel.

In our microfluidic channel, liquid pressure gradient per unit length is constant. Therefore, liquid 
flow in such rectangular channel follows

𝜇(∂2𝑢
∂𝑦2 + ∂2𝑢

∂𝑧2) =
𝑑𝑝𝐿
𝑑𝑥  , (S6)

where μ, u, and  are, respectively, liquid viscosity, flow velocity, and liquid pressure. 𝑝𝐿

Solving the partial differential equation with no-slip boundary conditions gives the velocity profi
le of the liquid flow, and thus the corresponding flow rate  for  can be written as3𝑄 0 ≤ ℎ/𝑤 ≤ 1

𝑄 =‒ 𝑤ℎ3

12𝜇 ∙
𝑑𝑝𝐿
𝑑𝑥 [1 ‒ 6(25)

𝜋5 (ℎ
𝑤)] . (S7)
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Let  the average velocity of the flow, then 〈𝑣〉

〈𝑣〉 =  𝑄
𝑤ℎ , (S8)

and 

𝑑𝑝𝐿
𝑑𝑥 = 1

〈𝑣〉 
𝑑𝑝𝐿
𝑑𝑡 =  𝑤ℎ

𝑄  
𝑑𝑝𝐿
𝑑𝑡  . (S9)

Substituting  in equation (S9) with (S7) gives,𝑄

𝑑𝑝𝐿
𝑑𝑡 = 12𝜇𝑄2

𝑤2ℎ4 ∙ 1

[6(25)
𝜋5 (ℎ

𝑤) ‒ 1]
=  𝛽𝜇𝑄2

𝑤2ℎ4 .
(S10)

Given that the channel length is L, the liquid pressure can be written as 

𝑝𝐿 =
𝑑𝑝𝐿
𝑑𝑥  (𝑥 ‒ 𝐿) + 𝑝𝑎𝑡𝑚 =  

𝑑𝑝𝐿
𝑑𝑡  (𝑡 ‒ 𝐿

〈𝑣〉 ) + 𝑝𝑎𝑡𝑚 , (S11)

where  is the atmospheric pressure at the outlet of the channel. Therefore, substituting equati𝑝𝑎𝑡𝑚

on (S10) into (S11) gives the liquid pressure equation: 

𝑝𝐿 =  𝛽 𝜇𝑄2

𝑤2ℎ4 (𝑡 ‒ 𝐿𝑤ℎ
𝑄 ) + 𝑝𝑎𝑡𝑚 . (S12)
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