Polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies

Chia-Wen Chang^{a,1}, Yung-Ju Cheng^{a,1}, MelissaTu^b, Ying-Hua Chen^a, Chien-Chung Peng^a, Wei-Hao Liao^a, and Yi-Chung Tung^{a,*}

^a Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan

^b Princeton University, Princeton, NJ 08544, USA

*Corresponding author. Tel: +886 2 27873138

E-mail: tungy@gate.sinica.edu.tw (Y.-C. Tung)

¹These authors contribute equally to this work

Supporting Information

Fig. S1. The experientially measured oxygen gradients obtained using the spatially confined chemical reaction (pyrogallol+NaOH) method inside the PDMS microfluidic devices with/without an embedded PC film. In the experiments, pyrogallol solution (200 mg/ml) and NaOH (1 M) are introduced into the channel in the top layer at flow rates of 5 μ l/min for oxygen scavenging reaction. The result demonstrates that the device with even a thicker PDMS top layer (~2 cm) can only generate oxygen gradient with the lowest oxygen tension of about 5.5%. In comparison, the PDMS-PC hybrid with a thinner top layer (~ 1cm) can still achieve the lowest oxygen tension of about 1% with better gradient linearity. The result suggests the embedded PC film acts as a gas diffusion barrier that enables the efficient oxygen tension control inside the device.