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1 Instrument response function

Figure 1: Instrument Response Function of the TCSPC set-up, and �t by a gaussian
function yielding a 200-ps FWHM.

Figure 1 displays the instrument response function (IRF) of the TCSPC set-up de-
scribed in the paper. The IRF is recorded by removing the notch �lter, so as to detect
the re�ection of the laser excitation pulses on the micro�uidic chip. The measured IRF
results from the convolution of the response functions of the SPAD, speci�ed to be 40 ps
FWHM by the manufacturer, of the acquisition system and of the laser pulse duration.
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Here, the measured 200-ps FHWM is essentially representative of the laser pulse duration.
The low-amplitude wing of the IRF function is attributed to spontaneous emission by the
laser diode, following the main laser emission pulse.

2 Reference �uorescence decay kinetics of �uorescein

in PBS bu�er solution

Figure 2: Reference �uorescence decay curve of �uorescein dissolved in PBS, as measured
with a streak camera in photon counting mode (black line), with a monoexponential �t
(in red) and the �t residuals (in green).

Figure 2 displays the �uorescence decay curve of �uorescein in PBS in a quartz �uo-
rescence cuvette measured with a streak camera (C10627 streak tube from Hamamatsu
Photonics) in the photon counting mode. The excitation light source is a femtosecond
laser pulse with a low repetition rate of 50 kHz, tuned at 515 nm. The �tting function
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described below is used and yields a Fluorescence Life Time (FLT) of τ = 4.13± 0.02 ns,
with feature-less residuals, evidencing a perfectly monoexponential decay.

3 Fluorescence decay �tting functions

3.1 Multiparameter function

In the above section, as well as in Figure 2 of the paper, we use a non-linear, least-
square minimization method to �t the �uorescence decay traces with a monoexponential
decaying function starting at t = t0, H(t− t0)× A exp(−(t− t0)/τ), and convolved with
a normalized gaussian function of standard deviation σ to account for the Instrument
Response Function (IRF). Here H(t− t0) is the Heaviside step function. The convolution
may be written analytically, yielding the following �tting function:

G(t) = C +
A

2
exp

(
σ2

2τ 2

)
exp

(
−t− t0

τ

)
×
[
1 + erf

(
t− t0 − σ2/τ

σ
√

2

)]
, (1)

where erf is the error function resulting from the convolution of the Heaviside function by
a gaussian function, and C accounts for a possible constant o�set. In total this yields up
to 5 �tting parameters among which C, σ, and t0 may be kept �xed after the prior �tting
of the instrument response function, reducing the e�ective �tting parameters to only 2.

In the case where the observation time window (20 ns = 1/kL) is not large enough
compared to the FLT, the signal rises on top of the tail of the �uorescence decay induced
by the preceding laser pulse. This is the case for instance in Figure 2A of the paper. We
may easily account for that by replacing the constant o�set C by the tail of the same
exponential function, advanced by 20 ns: A exp(−(t − t0 + 1/kL)/τ) (with A the same
coe�cient as in G(t)), as was done in the �t of Figure 2A in the paper.

3.2 Single parameter �tting function and Maximum Likelihood

estimate

For individual droplets or group of droplets (Figure 3 of the paper), the number of photons
in the �uorescence decay histogram is reduced. In order to minimize the uncertainty on
the corresponding FLT's, we rather implement the 1-parameter �tting procedure based on
the Maximum Likelihood method introduced by Hall & Selinger (1981) (see the References
section in the paper).

We de�ne τ the FLT, N the total number of counts in the histogram, b the histogram
channel bin width (b=100ps in Figure 3 of the paper), and T the observation time window
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(i.e. the inverse laser repetition rate, here T = (50MHz)−1 = 20 ns). Following Hall &
Selinger, the Maximum Likelihood (ML) estimator of τ is given by the solution of:

1 + (eb/τ − 1)−1 −m(eT/τ − 1)−1 =

∑m
1 iNi

N
, (2)

where i is the histogram bin index and m = T/b is the number of channels in the his-
togram. To solve Eq. 2 we implement a Newton-Raphson algorithm. We note here that
as soon as T >∼ 5τ , the left-hand side of Eq. 2 is directly equal to τ .

Hall & Selinger further give the expression for the variance σ2
τ of the Maximum Like-

lihood estimator of τ :

σ2
τ =

1

N

τ 4

b2

(
eb/τ

(eb/τ − 1)2
− (T/b)2 eT/τ

(eT/τ − 1)
2

)−1
. (3)

Hence, the estimated value of τ is expected to deviate from the exact value by a relative
rms standard error of:

στ
τ

=
1√
N

(
(b/τ)2eb/τ

(eb/τ − 1)2
− (T/τ)2 eT/τ

(eT/τ − 1)
2

)−1/2
, (4)

We note that :

for x→ 0 f(x) =
x2 ex

(ex − 1)2
= 1− x2

12
+ o(x2) (5)

for x→∞ f(x) =
x2 ex

(ex − 1)2
' x2e−x → 0 (6)

We conclude that in usual conditions (b < τ < T ), we can make the following approx-
imation:

στ
τ
' 1√

N

(
1 +

(b/τ)2

24
+

(T/τ)2 e−T/τ

2

)
, (7)

στ
τ
' 1√

N
for b� τ � T. (8)

We note that as soon as b < τ/2:

σ

τ
' 1.5√

N
for T = 3τ, (9)

σ

τ
' 1.1√

N
for T = 5τ. (10)
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4 Pile-up

4.1 Distortion of the �uorescence decay signal

Upon excitation by a single ultrashort laser pulse, the instantaneous photon emission rate
F (t) of a solution may be written:

F (t) = krN
∗f(t),

with N∗ the number of chromophores initially promoted in the excited state, kr the chro-
mophore radiative decay rate, and f(t) the population in the excited state normalized to
unity at t=0.

In a TCSPC experiment, a single detection event is followed by a deadtime which is
much longer than the �uorescence decay kinetics F (t). Hence one photon at maximum
may be detected per excitation laser pulse. Therefore, the probability to detect 1 photon
during the in�nitesimal time interval δt at time t after the impulsive laser pulse excitation,
is conditioned to the probability that no photon was detected before that time t.

When δt is su�ciently small, the probability to detect 1 photon during δt is ηF (t)δt
and the probability to detect more than one photon vanishes, such that the probability
to detect no photon during δt is 1 − ηF (t)δt. Here η is the product of the photon
collection e�ciency and of the photodetector quantum yield. We now introduce P0(t),
the probability to detect 0 photon during the �nite time interval [0; t], after impulsive
excitation at time t = 0. Provided successive detection events are uncorrelated, we may
write:

P0(t+ δt) = P0(t)× (1− ηF (t)× δt) (11)

that is
P0(t+ δt)− P0(t)

δt
= −P0(t)ηF (t) with δt→ 0 (12)

hence
dP0(t)

dt
= −P0(t)ηF (t) (13)

P0(t) = exp

(
−η
∫ t

0

F (u)du

)
(14)

Thus, the probability to detect 1 photon during the very small time interval b (binning)
at the delay time t after excitation is:

P0(t)× ηF (t)b = s(t)× b,

where s(t) is the probability density to detect a photon at time t after a single laser pulse:

s(t) = kcf(t)× exp

(
−kc

∫ t

0

f(u)du

)
(15)
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with kc = ηkrN
∗ the maximum (at t = 0) photon collection rate, as introduced in the

paper.
In conditions where the detection dead time is much larger than τ but smaller than

the interval between two successive laser pulses: τ � TD � 1/kL, then the TCSPC signal
S(t) accumulated after N excitation laser pulses is given by:

S(t) = Ns(t). (16)

Let us now consider the case of a monoexponential decay, f(t) = exp(−t/τ). We may
thus write: ∫ t

0

f(u)du =

∫ t

0

exp(−u/τ)du = τ(1− exp(−t/τ)), (17)

and obtain the result initially derived by Hopzapfel (1974) (see the References section in
the paper):

s(t) = kc exp(−t/τ)× exp (−kcτ(1− exp(−t/τ))) (18)

In the case α = kcτ � 1, Eq. 18 may be expanded according to:

s(t) = kc exp(−t/τ)× exp (−α(1− exp(−t/τ))) (19)

' kc exp(−t/τ) (1− α(1− exp(−t/τ))) (20)

= kc ((1− α) exp(−t/τ) + α exp(−2t/τ)) (21)

At the lowest order in α, the pile-up e�ect thus distorts a monoexponential decay of
time constant τ into a biexponential decay with time constants τ (weight 1− α) and τ/2
(weight α), such that the average decay time constant τd of the detected signal appears
to be:

τd ' τ(1− α/2) (22)

As an illustration, the function s(t)/kc given by Eq. 18 is plotted in Figure 3 for α =
0.2, together with its monoexponential �t which yields a time constant τd = 0.912τ . The
real FLT is thus obtained from the monoexponential �t of s(t) by τ = τd/0.912 = 1.096τd
while the formula 22 predicts τ ' τd(1 + α/2) = 1.10τd, thus showing an accuracy of
better than 1%.
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Figure 3: Function s(t)/kc from Eq. 18 for α = 0.2 (black), monoexponential �t (red)
and residuals (inset). The result of the �t yields the detected time constant τd = 0.912τ .

4.2 Saturation of the photon detection rate

4.2.1 The case of low laser repetition rate

In the above conditions (τ � TD � 1/kL), the total number Nd of photons e�ectively
detected after N laser pulses is given by:

Nd =

∫ ∞
0

S(t)dt = N

∫ ∞
0

s(t)dt (23)

In the case of a monoexponential �uorescence decay kinetics, we can write (with α = kcτ):∫ ∞
0

s(t)dt = kc exp(−α)

∫ ∞
0

exp(−t/τ) exp(α e−t/τ ) dt (24)

= kc exp(−α)

∫ 0

1

X exp(αX)

(
−τdX

X

)
(25)

= α exp(−α)

∫ 1

0

exp(αX)dX (26)

= exp(−α)[exp(αX)]10 (27)∫ ∞
0

s(t)dt = 1− e−α (28)
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Finally, the average photon detection rate is given by:

kd = kL
Nd

N
= kL

(
1− e−α

)
(29)

Hence, for increasing values of kc (e.g. increasing incident laser power, see Beer-
Lambert's law below), the e�ective photon detection rate saturates at kd = kL, meaning
one photon at maximum per laser pulse, due to the photodetector deadtime (pile-up ef-
fect).

4.2.2 Beer-Lambert's law

The number of photons in a laser pulse of wavelength λ, average power P , repetition rate
kL is:

P

kL

λ

hc

where P/kL is the energy per pulse and hc/λ the energy of a single photon. The number
N∗ of chromophores excited by this pulse equals the number of photons absorbed by the
droplet. The Beer-Lambert law gives the fraction of photons which are absorbed in the
incident pulse by the droplet as being:

1− 10−A ∼ A ln(10)

in the limit where the absorbance of the droplets A = εC0L � 1 is very low. Here, C0

is the chromophore concentration in the droplet, ε the chromophore extinction coe�cient
at the excitation wavelength, and L the droplet thickness. Because the typical droplet
absorbance is very low, A = εC0L � 1, the number of absorbed photons is simply
proportional to the chromophore concentration.
Hence the photon collection rate which enters in Eq. 15 or 18 is given by:

kc = ηkrN
∗ = ηkr

P

kL

λ

hc
A ln(10). (30)

Let us now write α = kcτ . Eq. 30 gives:

α = η Q
P

kL

λ

hc
A ln(10), (31)

where τkr = Q is the �uorescence quantum yield, by de�nition. Notice, that α is directly
proportional to the collection e�ciency η, the laser power P , and the chromophore con-
centration C0 (since A = εC0L).

8



In the case where α is su�ciently small, Eq. 29 gives the photon detection rate as:

kd = kL(1− e−α) ' αkL = η Q P
λ

hc
A ln(10). (32)

Here we note that in the case of continuous wave (�cw") excitation with same average
power P , the number of photons absorbed per time unit would be:

P
λ

hc
A ln(10),

such that the number of �uorescence photons detected per time unit would be given by
the same formula 32.

4.2.3 The case of high laser repetition rate

Figure 4: The instantaneous photon emission rate F(t) is periodic with the laser repetition
period. A detection event at time t is followed by a detector deadtime of TD = n×TL+∆T
during which the following n laser pulses cannot yield any detection event.

Consider now the case where the laser repetition rate is increased such that τ � TL ≤
TD = nTL+∆T (see Fig. 4), as it is in the experimental conditions of the paper.Whenever
a photon is detected, the detector becomes blind to any other photon which would be col-
lected as a result of the n following laser pulses occurring during the deadtime. Therefore,
if the overall experiment lasts for a period of time T , during which N = kLT laser pulses
have occurred and Nd photons have been detected, there has been Nd periods of time
TD during which the detector was blind, meaning that a number of Nd × n laser pulses
certainly yielded no detection event. Hence the Nd detected photons have been produced
by an e�ective N−nNd number of laser pulses each yielding an average

∫∞
0
s(t)dt number

of detection events, such that:

Nd = (N − nNd)×
∫ ∞
0

s(t)dt (33)
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In the end the average photon detection rate is:

kd =
Nd

T
= (kL − nkd)×

∫ ∞
0

s(t)dt (34)

kd = kL
1− e−α

1 + n(1− e−α)
(35)

Using the Beer-Lambert law (Eq. 31), this formula may be rewritten as:

kd = kL
1− e−βP

1 + n(1− e−βP )
(36)

where P is the excitation laser average power. Eq. (36) was used to approximate and �t
the dependence of the experimental average photon detection rate kd with the laser power
P , plotted in Figure 4A of the paper. A single-parameter (least-square minimization) �t
is performed to infer the value of β (since kL=50 MHz and n = 2 are known). We thus
obtain the quantitative relation between α and the laser excitation power P (α = βP ).

5 Application to high-throughput screening

From the above considerations on the Maximum Likelihood estimate of the FLT, we
conclude that the minimal coe�cient of variation CV one may achieve is:

CVmin =
1√
N
,

where N is the number of photons detected in a single �uorescence decay histogram. We
also note that N itself is limited by the trade o� between achieving the maximum photon
detection rate kd and avoiding signi�cant pile-up distortion (α� 1).

For the application to HTS, we may estimate how this fundamental limit a�ects the
quality of an assay based on a change in �uorescence quantum yield Q measured by
FLT detection. To that end, we can express the Z ′ factor as a function of the number
of photons detected in two control samples yielding two di�erent FLT's τ+ and τ− ,
with τ+ > τ−. By de�nition, the two FLT's correspond to two �uorescence quantum
yields Q+ and Q−, respectively. All other experimental conditions being constant, the
change in quantum yield results in a change in α (see Eq. 31) and in the total number
of photons detected. Therefore we shall de�ne correspondingly α+, α− and N+, N−. Let
us also de�ne r = τ−/τ+ (0 < r < 1) the ratio between both FLT's. We thus can write
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r = Q−/Q+ = N−/N+ = α−/α+. By plugging Eq. 8 into the de�nition of Z' given by
Zhang et al. (1999) (see the References section in the paper), we get:

Z ′ = 1− 3σ+ + 3σ−

τ+ − τ−
(37)

= 1− 3

τ+√
N+

+ τ−√
N−

τ+ − τ−
(38)

= 1− 3√
N+

1 + r
√
N+√
N−

1− r
(39)

The number of photons detected in a sample is given by the photon detection rate kd and
the exposure time, the latter being presumably the same for all samples.

In the case we use expression (29) for kd as a function of α, we get (hereafter we write
α+ = α and α− = rα):√

N+

N−
=

√
1− e−α
1− e−rα

'
(

α− α2/2

rα− r2α2/2

)1/2

(40)

' 1√
r

(1− α/4)(1 + rα/4) ' 1√
r

(
1− α

4
(1− r)

)
' 1√

r
(41)

Now if we are in conditions where kd is given by expression (35), we rather get:√
N+

N−
=

√
1− e−α
1− e−rα

× 1 + n(1− e−rα)

1 + n(1− e−α)
, (42)

with
1 + n(1− e−rα)

1 + n(1− e−α)
' 1 + nrα

1 + nα
' (1 + nrα)(1− nα) ' 1 + n(r − 1)α, (43)

such that

√
N+

N−
' 1√

r

(
1− α

4
(1− r)

)
×
(

1 + n(r − 1)
α

2

)
(44)

' 1√
r

(
1− α(1− r)2n+ 1

4

)
' 1√

r
(45)

Finally, we conclude that in both cases, for small values of α, the Z ′ factor is expressed
as:

Z ′ = 1− 3√
N+

1 + r
√

N+

N−

1− r
(46)

' 1− 3√
N+

1 +
√
r

1− r
= 1− 3

(1−
√
r)
√
N+
' Z ′ (47)
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