## **Supplementary Material**

| Case | $w_m$ (µm) | $w_s (\mu m)$ | <i>h</i> (µm) | <i>t</i> (µm)     |
|------|------------|---------------|---------------|-------------------|
| 1    | 100        | 50            | 45            | 17 on glass slide |
| 2    | 100        | 50            | 45            | 17                |
| 3    | 100        | 50            | 45            | 10                |
| 4    | 100        | 50            | 45            | 5                 |
| 5    | 200        | 100           | 45            | 17 on glass slide |
| 6    | 200        | 100           | 45            | 17                |
| 7    | 200        | 100           | 45            | 10                |
| 8    | 200        | 100           | 45            | 5                 |

Table A. Dimensions of the relevant geometrical parameters for the eight different T-junction microchannels. Given geometrical parameters are described in Fig. 2(b)-(c).

Table B. Mechanical properties of thin membranes. The Young's modulus (*E*) is measured by an Agilent Nano Indenter G200. The bending stiffness *B* is calculated according to the equation, B = EI where *I* is the second moment of area;  $I = t^3 w_m/12$  for a thin film of thickness *t* and width *w*.

| Case | $w_m$ (µm) | <i>t</i> (µm)     | E (Pa)                | <i>B</i> (Nm <sup>2</sup> ) |
|------|------------|-------------------|-----------------------|-----------------------------|
| 1    | 100        | 17 on glass slide | $7.17 \times 10^{10}$ | 4.8 ×10 <sup>-3</sup> ‡     |
| 2    | 100        | 17                | $6.00 	imes 10^6$     | 2.5×10 <sup>-13</sup>       |
| 3    | 100        | 10                | $6.98 	imes 10^6$     | 5.8×10 <sup>-14</sup>       |
| 4    | 100        | 5                 | $7.17 	imes 10^6$     | 7.5×10 <sup>-15</sup>       |
| 5    | 200        | 17 on glass slide | $7.17 	imes 10^{10}$  | 9.6×10 <sup>-3</sup> ‡      |
| 6    | 200        | 17                | $6.0 	imes 10^6$      | 4.9×10 <sup>-13</sup>       |
| 7    | 200        | 10                | $6.98 	imes 10^6$     | 1.6×10 <sup>-13</sup>       |
| 8    | 200        | 5                 | $7.17 	imes 10^6$     | 1.5×10 <sup>-14</sup>       |

‡ For cases 1 and 5, to calculate the bending stiffness, we assume that the dominant material is the glass slide where the thickness is 2 mm. Therefore, the Young's modulus of the glass slide is used for the two cases.

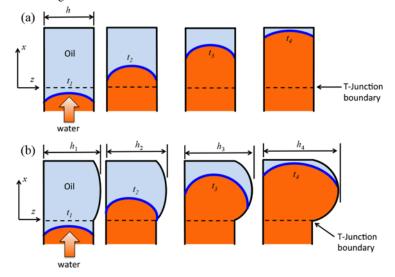



Fig. A. Comparison of schematics of the liquid-liquid interface time evolution in the *x-z* plane at the T-junction. (a) The conventional rigid T-junction and (b) the soft wall T-junction. The blue solid lines indicate the water-oil interface.