Electronic Supplementary Information

Integration of reverse transcriptase loop-mediated isothermal amplification with an immunochromatographic strip on a centrifugal 5 microdevice for influenza A virus identification

J. H. Jung, B. H. Park, S. J. Oh, G. Choi, and T. S. Seo*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

10 Fabrication of the ICS

The ICS made of a buffer loading pad (3.6 mm x 18 mm), a conjugate pad (3.6 mm x 0.8 mm), an absorbent pad (3.6 mm x 19 mm) that were purchased from Ahlstrom(Helsinki Finland). A nitrocellulose membrane (3.6 mm x 25 mm x 12 um) was purchased from M.D.I (India). The nitrocellulose membrane was attached on the polystyrene plate and then the absorbent pad was adhesive on the nitrocellulose membrane at the left side. The buffer loading pad and conjugate pad were attached on the nitrocellulose membrane at the right side.

- 15 Briefly, colloidal Au NPs (avg. diameter:48.9 nm) were synthesized by adding 15 ml of chloroauric acid (2%, w/v) to 1.5 L of a deionized water and heating at 95 °C followed by boiling for 5 min. Then 5.1 ml of trisodium citrate (10%, w/v) was added and heated to 95℃ for 5 min. Streptavidin (0.05 mg) and mouse IgG-AuNPs were mixed with 10 ml of colloidal AuNPs solution at pH 6.5. The Au NP conjugate streptavidin and mouse IgG were sprayed onto a conjugate pad. The Goat anti-mouse IgG (1 mg/ml), Texas Red IgG (1 mg/ml) and Digoxigenin IgG (2.5 mg/ml) were jetted linearly onto the nitrocellulose membrane using a dispensing platform to form a
- 20 test and control line (0.1 uL/mm²). The nitrocellulose membrane, the conjugate pad, the buffer loading pad and the absorbent pad were assembled with an adhesive card.1,2

Target gene	Primer	Sequence (5' to 3')	Length (bp)
H1	F3	AAGCTCAGCAAATCCTACA	19
	B3	TCCCTCACTTTGGGTCTT	18
	FIP	GACTTTGTTGGTCAGCACTAGTAGA-AAAGGGAAAGAAGTCCTCG	44
	BIP	ATCAGAATGCAGATGCATATG-GCTATTTCCGGCTTGAACT	40
	LF	(Texas Red) GATGGTGAATGCCCCATAGC	20
	LB	(Texas Red) TTTTGTGGGGGACATCAAGATACAG	24

Table S1. Primer designs for multiplex RT-LAMP reaction to identify influenza A virus

Н3	F3	GAGCTGGTTCAGAGTTCCT	19
	B3	GCATAATCCGGCACATC	18
	FIP	AGAGCATCTATTAGTGTGCAGTTTTC-AACAGGTGAAATATGCGAC	45
	BIP	GAGACCCTCAGTGTGATGGC-GTAACAGTTGCTGTAGGCT	39
	LF	(Texas Red) CCATCAAGGATCTGATGAGGACT	23
	LB	(Texas Red) AATGGGACCTTTTTGTTGAACG	22
Н5	F3	GAACTCTAGACTTTCATGACTCAA	24
	B3	TTACTCCACTTATTTCCTCTCTT	23
	FIP	CGTTACCAAGCTCCTTTGC-ATGTCAAGAACCTTTACGACA	40
	BIP	GTTTCGAGTTCTATCACAGAT- TGATTCTTCTGAATACTGCGGGTAGT	47
	LF	(Texas Red) CCCTAAGCTGTAGTCGGACC	20
	LB	(Texas Red) TGGAAAGTGTAAGAAACGGAACG	23
	F3	TTCTAACCGAGGTCGAAAC	19
M	B3	GGACAAAGCGTCTACGC	17
	FIP	TGTTCTTY*CCTGCAAAGACA-TCTATCATCCCGTCAG	39
	BIP	CTAAAGACAAGACCAATC-ACTGGGCACGGTGAGCG	40
	LF	(Digoxigenin) TCTGYGCGATCTCGGCT	17

*Y = C (50%) + T (50%)

Closed vent* - Closed vent channel is linked with the Air chamber in the 1st patterned layer

Figure S1 (a) Schematic illustration of the PC cover. (b) Schematic design of the 1^{st} PC patterned layer. (i) A link channel between the RT-LAMP chamber and the ICS, and (ii) a link channel between the running buffer reservoir and the ICS. (c) Schematic illustration of the 2^{nd} PC patterned layer. (d) Schematic illustration of the 3^{rd} PC patterned layer.

5

Figure S2. (a) Schematic view of the sample loading part, (i) a floor plan and (ii) a cross-section view of the sample loading from the sample dispensing microchannel to the RT-LAMP chamber. (b) Schematic illustration of the ICS integration part, (i) A floor plan and (ii) a cross-section view of the ICS integration part.

5

10

15

20 References

- 1 Y. T. Kim, J. H. Jung, Y. K. Choi and T. S. Seo, *Biosens. Bioelectron.*, 2014, 61, 485-490.
- 2 J. H. Jung, S. J. Oh, Y. T. Kim, S. Y. Kim, W.-J. Kim, J. Jung and T. S. Seo, *Anal. Chim. Acta*, 2014, DOI: 10.1016/j.aca.2014.10.020.