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S1 Governing equations and numerical methods

The governing equations for the incompressible flow of a Newtonian fluid are
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where is the fluid velocity and the gravitational force is neglected in the present study.u

The force on a particle is calculated by integrating the total stress across the particle. The 

motion of a rigid spherical particle follows Newton’s second law of motion
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where is the mass of the particle,  the unit tensor,  the moment of pm 1  58 15pdiag aI

inertia tensor of the particle, and  the position of the center of mass. The nondimensional cmx

force coefficient, , is given asLC
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The governing equations are then discretized and numerically solved on structured 

overlapping grids in the Overture C++ framework1. The present computational domain consists 

of four structured component grids: a Cartesian background, orthographic patches at two poles of 

a sphere and the sphere with its poles removed to avoid coordinate singularities (Fig. 1(b)). The 

solutions between different component grids are coupled by interpolating the flow variables of 

the grid points at the boundary of a component grid from the variables of other component grids. 

The body fitted grids marching outward the particle surface match well with the background grid 
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in size to obtain a high quality of interpolation. During the motion of the sphere, the overlapping 

grids are updated at every time step to maintain high quality. 

The no-slip wall boundary conditions are imposed on the channel walls and the surface of 

particle. The Poiseuille-flow velocity profile for a rectangular cross-section is imposed on the 

inlet
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where is the channel length and the pressure difference between the inlet and the outlet. The L p

outflow boundary condition assuming fully developed flow with the constriction of 

is imposed on the outlet. 0p p n   

A second-order Adams predictor-corrector method is used for time stepping in solving the 

incompressible N-S equations2. The N-S equations is briefly written to facilitate discussion as 

follows

(S5a) ,f p
t




u u

(S5b)   ,f p p      u u u u

In the time stepping, the viscous term is treated implicitly with an implicit factor of 0.5 

(Crank-Nicolson method) and other terms are explicitly treated. The function is split into  ,f pu

explicit and implicit parts, and . Ef p   u u If  u

The predictor and corrector steps are defined as
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where the superiors , , and represent the time level at which the equations are p 1n  n 1n 

solved. The CFL number is set to be 0.75 for all cases to guarantee the stability of numeric 

solutions. A second-order accurate centered difference scheme is applied to the spatial discretize 

the convective and viscous terms.

The Poisson equation for pressure is implicitly solved to obtain vanishing divergence. The 

linear system derived from the pressure equation is iteratively solved using the stabilized bi-

conjugate gradient method (BiCG-Stab) with the incomplete LU preconditioner (ILU). The 

solving process is done by PETSc software package, which has an interface to the Overture 

framework3. The elliptic type pressure equation is efficiently solved on the overlapping grid 

using the multigrids method.

S2 Entrance effect

The entrance length Le, which refers to the channel length that needed to achieve a fully 

developed velocity profile, is expressed as:R2

                                                            (S7)0.06 ReeL D

where D is the hydraulic diameter, D = 2HW/(H+W) (H is the channel height, W is the channel 

width). For the case of AR = 6 (the hydraulic diameter D = 85.7 μm) and Re = 300, the entrance 

length Le is:

1.54 mmeL 

The length that has developing velocity profile is a small portion of the whole channel length of 

60 mm. Therefore, the developing velocity profile has little influence on the particle migration.
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Fig. S1 The nondimensional lift coefficients of a sphere with at various radial positions 0.15 
of a tube at . The results from ALE (open circles), DLM (open squares) codes by Zhu et Re 100
al.5 and our results (solid marks) are in good agreement.
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Fig. S2 The 2y/H for the curves shown in Fig. 6 are determined as 0.46, 0.48, 0.52 and 0.55 for 
Re = 50, 100, 200 and 300, respectively.
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Fig. S3 The distribution of nondimensional pressure coefficient on the sphere with  in 0.3 
the plane for (a)  and (b) . The angle donates the angle between 2 0.55y H  Re 50 Re 300 
the radial vector and the -axis (main flow direction).x
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