Lab on a Chip

SUPPLEMENTARY INFORMATION

A multichannel neural probe with embedded microfluidic channels for simultaneous *in vivo* neural recording and drug delivery

Hyunjoo J. Lee^a, Yoojin Son^{a,b}, Jeongyeon Kim^c, C. Justin Lee^c, Eui-Sung Yoon^a, and Il-Joo Cho^{a,*}

^a Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.

^b School of Electrical Engineering, Korea University, Seoul, Korea.

^c Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.

Fig. S1 Schematic of the pressure-driven injection system used to inject drugs in vivo.

Fig. S2 Mouse *in vivo* experimental setup showing the stereotaxic frame, Neuralynx connector and board, ground screw, and packaged neural probe.

Fig. S3 Optical pictures of (a) probe with 16 microelectrode used in the first *in vivo* experiments and (b) probe with 8 microelectrode used in the second *in vivo* experiments.