Protease Profiling Using a Fluorescent Domino Peptide Cocktail

Yang Yongzheng and Jean-Louis Reymond*
Department of Chemistry \& Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland

E-mail: jean-louis.reymond@ioc.unibe.ch FAX: +41 316318057

Supporting Information

- Data for reference fragments
- MS-traces of cocktail peptides
- HPLC traces of cocktail references and protease fingerprints

1P1 (*KDESY): Starting with 70 mg of Fmoc- Tyr $_{(\mathrm{t} \text {-bu) }}$-Wang resin (0.044 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-KDESY-OH ($15.1 \mathrm{mg}, 0.018 \mathrm{mmol}, 41 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{16}$ $[\mathrm{M}+\mathrm{H}]^{+}: 843.3048$, found 843.3072.

1P2 (*KDES): Starting with 70 mg of $\mathrm{Fmoc}^{-S_{2}} \mathrm{Ser}_{(\mathrm{tbu})}$-Wang resin (0.044 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-KDES-OH $(15.0 \mathrm{mg}, 0.022 \mathrm{mmol}, 50 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{14}$ $[\mathrm{M}+\mathrm{H}]^{+}: 680.2415$, found 680.2421 .

1P3 (*KDE): Starting with 80 mg of $\mathrm{Fmoc}^{-\mathrm{Glu}_{(0 t-b u)}-W a n g ~ r e s i n ~(~} 0.043 \mathrm{mmol}$), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-KDE-OH ($18.3 \mathrm{mg}, 0.025 \mathrm{mmol}, 58 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{12}$ $[\mathrm{M}+\mathrm{H}]^{+}: 593.2094$, found 593.2090.

1P4 (*KD): Starting with 70 mg of $\mathrm{Fmoc}^{(} \mathrm{Asp}_{(\text {ot-bu) }}$-Wang resin (0.042 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-KD-OH $(11.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 60 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{21} \mathrm{H}_{2} 6 \mathrm{~N}_{3} \mathrm{O}_{9}$ $[\mathrm{M}+\mathrm{H}]^{+}: 464.1669$, found 464.1678 .

1P5 (*K): Starting with 70 mg of $\mathrm{Fmoc}^{-L y s} \mathrm{Sboc}_{(\mathrm{boc}}-$ Wang resin $(0.046 \mathrm{mmol})$, Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-K-OH (4.2 mg , $0.012 \mathrm{mmol}, 26 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{17} \mathrm{H}_{2} 1 \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 349.1399 , found 349.1393 .

2P1 (*AVPER): Starting with 70 mg of $\mathrm{Fmoc}^{\left(\mathrm{Arg}_{(\mathrm{pbf})}-\text { Wang resin }(0.046 \mathrm{mmol}) \text {, Fmoc-type }\right.}$ spps followed by cleavage and purification by preparative RP-HPLC gave AAC-AVPER-OH
($17.4 \mathrm{mg}, 0.023 \mathrm{mmol}, 50 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{~N}_{8} \mathrm{O}_{12}$ $[\mathrm{M}+\mathrm{H}]^{+}: 773.3469$, found 773.3467.

2P2 (*AVPE): Starting with 70 mg of Fmoc- Glu $_{(\text {ot-bu) }}$-Wang resin (0.043 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-AVPE-OH ($5.8 \mathrm{mg}, 0.0094 \mathrm{mmol}, 22 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{11}\left(\mathrm{Na}^{+}\right)$ $[\mathrm{M}+\mathrm{H}]^{+}: 639.2278$, found 639.2268 .

2P3 (*AVP): Starting with 70 mg of Fmoc-Pro-Wang resin (0.063 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-AVP-OH (2 mg , $0.004 \mathrm{mmol}, 6 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8}\left(\mathrm{Na}^{+}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 510.1852, found 510.1867.

2P4 (*AV): Starting with 100 mg of Fmoc-Val-Wang resin (0.051 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-AV-OH (11.5 mg , $0.029 \mathrm{mmol}, 57 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 390.142701 , found 390.143070 .

2P5 (*A): Starting with 130 mg of Fmoc-Ala-Wang resin (0.042 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-A-OH (3.9 mg , $0.013 \mathrm{mmol}, 31 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{1} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 290.074287 , found 290.074220 .

3P1 (*EFVGS): Starting with 70 mg of Fmoc- $\operatorname{Ser}_{(\mathrm{t} \text {-bu) }}$-Wang resin (0.044 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-EFVGS-OH ($8.0 \mathrm{mg}, 0.011 \mathrm{mmol}, 25 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{13}$ $[\mathrm{M}+\mathrm{H}]^{+}$: found 739.5828.

3P2 (*EFVG): Starting with 70 mg of Fmoc- Gly-Wang resin (0.046 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-EFVG-OH (11.0 $\mathrm{mg}, 0.017 \mathrm{mmol}, 37 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$: 675.2278, found 675.2298 .
$3 P 3$ (*EFV): Starting with 100 mg of Fmoc-Val-Wang resin (0.051 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-EFV-OH (9.0 mg , $0.015 \mathrm{mmol}, 29 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$: 596.2244, found 596.2274.

3P4 (*EF): Starting with 61 mg of Fmoc-Phe-Wang resin (0.061 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-EF-OH (13.8 mg , $0.028 \mathrm{mmol}, 46 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}$: 497.1560, found 497.1577.

3P5 (*E): Starting with 80 mg of Fmoc- $\mathrm{Glu}_{(0 \mathrm{t}-\mathrm{bu})}$-Wang resin (0.043 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-E-OH (12.0 mg , $0.034 \mathrm{mmol}, 79 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{1} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$: 349.079767, found 349.081210 .

4P1 (*YARKL): Starting with 70 mg of Fmoc- Leu -Wang resin (0.043 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-YARKL-OH $(15.8 \mathrm{mg}, 0.019 \mathrm{mmol}, 44 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{~N}_{9} \mathrm{O}_{11}$ $[\mathrm{M}+\mathrm{H}]^{+}: 852.4255$, found 852.4249.
 spps followed by cleavage and purification by preparative RP-HPLC gave AAC-YARK-OH ($23.5 \mathrm{mg}, 0.032 \mathrm{mmol}, 70 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{~N}_{8} \mathrm{O}_{10}$ $[\mathrm{M}+\mathrm{H}]^{+}: 739.3412$, found 739.3398 .

4P3 (*YAR): Starting with 79 mg of $\mathrm{Fmoc}^{(} \mathrm{Arg}_{(\mathrm{pbf})}$-Wang resin (0.046 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-YAR-OH ($16 \mathrm{mg}, 0.026 \mathrm{mmol}, 57 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}$: 611.2465 , found 611.2471 .
$4 \mathbf{P 4}$ (*YA): Starting with 130 mg of Fmoc- Ala -Wang resin (0.042 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-YA-OH (2.5 mg , $0.0055 \mathrm{mmol}, 12 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$: 477.1273, found 477.1271.

4P5 (*Y): Starting with 70 mg of Fmoc- Tyr $_{(t-b u)}$-Wang resin (0.044 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-Y-OH (5.8 mg , $0.015 \mathrm{mmol}, 34 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 384.1083, found 384.1087.

5P1 (*LKYFD): Starting with 70 mg of Fmoc- Asp $_{(\text {(ot-bu) }}$-Wang resin $(0.042 \mathrm{mmol})$, Fmoctype spps followed by cleavage and purification by preparative RP-HPLC gave AAC-LKYFD-OH ($18.4 \mathrm{mg}, 0.021 \mathrm{mmol}, 50 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{45} \mathrm{H}_{55} \mathrm{~N}_{6} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]^{+}: 887.3827$, found 887.3865.

5P2 (*LKYF): Starting with 70 mg of Fmoc- Phe -Wang resin (0.061 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-LKYF-OH ($20.1 \mathrm{mg}, 0.026 \mathrm{mmol}, 43 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{41} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{10}$ $[\mathrm{M}+\mathrm{H}]^{+}: 772.3557$, found 772.3538 .

5P3 (*LKY): Starting with 70 mg of Fmoc- $\mathrm{Tyr}_{(\mathrm{t} \text {-bu) }}$-Wang resin (0.044 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-LKY-OH $(11.4 \mathrm{mg}, 0.018 \mathrm{mmol}, 41 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}:$ calc. for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{9}$ $[\mathrm{M}+\mathrm{H}]^{+}: 625.2873$, found 625.2897.

5P4 (*LK): Starting with 69 mg of Fmoc- Lys (boc) -Wang resin (0.044 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-LK-OH ($11.4 \mathrm{mg}, 0.025 \mathrm{mmol}, 57 \%$) as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7}$ $[\mathrm{M}+\mathrm{H}]^{+}: 462.2260$, found 462.2262.

5P5 (*L): Starting with 69 mg of Fmoc- Leu -Wang resin (0.044 mmol), Fmoc-type spps followed by cleavage and purification by preparative RP-HPLC gave AAC-L-OH (2.3 mg , $0.007 \mathrm{mmol}, 16 \%)$ as colorless foamy solid. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 333.121238 , found 333.121190 .

Peptide 1. $\mathrm{ESI}^{+}-\mathrm{MS}:$ calc. for $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{~N}_{11} \mathrm{O}_{16}[\mathrm{M}+\mathrm{H}]^{+}: 998.4219$, found 998.4240.

Peptide 2. $E S I^{+}-\mathrm{MS}:$ calc. for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{~N}_{9} \mathrm{O}_{14}[\mathrm{M}+\mathrm{H}]^{+}: 860.3790$, found 860.3779.

Peptide 3. $\mathrm{ESI}^{+}-\mathrm{MS}$: calc. for $\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{15}[\mathrm{M}+\mathrm{H}]^{+}: 854.3208$, found 854.3215 .

Peptide 4. $\quad \mathrm{ESI}^{+}-\mathrm{MS}:$ calc. for $\mathrm{C}_{50} \mathrm{H}_{67} \mathrm{~N}_{10} \mathrm{O}_{12}[\mathrm{M}+\mathrm{H}]^{+}: 999.4939$, found 999.4964.

Peptide 5. $\quad E I^{+}-\mathrm{MS}:$ calc. for $\mathrm{C}_{51} \mathrm{H}_{67} \mathrm{~N}_{8} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]^{+}: 999.4827$, found 999.4796 .

Sample Name: Yang
+TOF MS: 0.083 to 0.567 min from YZ383 A.
$a=3.56191957234597310$ enin

University of Bern, Department of Chemistry and Biochemistry

ESI-MS positive mode
Sample dissolved in $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O} / \mathrm{HFo}(70+25+5)$ Max 458.1 counts.

1. HPLC Traces for Reference Group 1

2. HPLC Traces for Reference Group 2

3. HPLC Traces for Reference Group 3

YZ-440-19, Reference Peptides 10-3 with AAC: 10uM, in Bistris Buffer (pH 2.5)

4. HPLC Traces for Trypsin

5. HPLC Traces for Subtilisin

YZ-436 Test 2, Mixture (4-AMC, YZ-370, 372, 376, 375, 383): 10uM, Bistris Buffer (pH 6.5), Subilisin: $5 u m / \mathrm{mL}, 37^{\circ} \mathrm{C}, 1 \mathrm{~h}$

6. HPLC Traces for Chmotrypsin

YZ-436 Test 3 , Mixture (4-AMC, YZ-370, 372, 376, 375, 383): 10uM, Bistris Buffer (pH 8), Chymofrypsin: $5 u g / \mathrm{mL}, 37^{\circ} \mathrm{C}$, ih

7. HPLC Traces for Pepsin

YZ-436 Test 4, Mixture (4-AMC, YZ-370, 372, 376, 375, 383): 10uM, Bistris Buffer (pH H), Pepsin: 5 ug/mL, $37^{\circ} \mathrm{C}, 1 \mathrm{~h}$

8. HPLC Traces for Papain

9. HPLC Traces for Purified Protease C Wild Type (1h)

10 HPLC Traces for Protrase C Wild Type (10h)

11. HPLC Traces for Ptoteinase K

Measurement Condition: Peptide Mixture Concentration, 10 uM ; 20 mM Bistris Buffer (pH 9.0); Proteinase K, $50 \mathrm{ug} / \mathrm{mL}$; in Tot Volume $100 \mathrm{uL} ; 37^{\circ} \mathrm{C}$; 1 h

12. HPLC Traces for Thermolysin

13. HPLC Traces for blank

14. HPLC Traces for Proteinase K-1-1h

15. HPLC Traces for Subtilisin-1 -1h

16. HPLC Traces for Thermolysin-1 -1h

17. HPLC Traces for Trypsin-1-10 min
'z-

18. HPLC Traces for Trypsin-1-30 min

19. HPLC Traces for Trypsin-1-1h

Yz-840 Test 3: AAC cocktail peptides 10 uM , total 50 uM in Bistris buffer (pH 8.0) total 100 uL, Trypsin $5 \mathrm{ug} / \mathrm{mL}, 37^{\circ} \mathrm{C}, 1 \mathrm{~h}$

20. HPLC Traces for Trypsin-1 - 2 h
$Y_{Z}-840$ Test 4: AAC cocktail peptides $10 u M$, total 50 uM in Bistris buffer (pH 8.0) total 100 uL , Trypsin $5 \mathrm{ug} / \mathrm{mL}, 37^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

21. HPLC Traces for Trypsin-1-5h

List of labeling of reference fragments (transfer from lab label)

Fragments	Sequence	Lab label	Ret.T (min)
$1 \mathrm{P5}$	*K	370-5	6.86
1P2	*KDES	370-2	6.89
1 P 3	*KDE	370-3	7.23
1P4	*KD	370-4	7.63
$3 \mathrm{P5}$	*E	376-5	9.15
P6	*	AAC	11.44
1P	*KDESYR	370	11.67
2P5	*	372-5	12.17
4P2	*YARK	375-2	13.67
1P1	*KDESYR	370-1	14.08
4P3	*YAR	375-3	15.33
2P	*AVPERS	372	17.46
4P4	*YA	375-4	18.01
2P1	*AVPERS	372-1	18.14
4P5	*Y	375-5	18.63
2 P 2	*AVPE	372-2	19.87
2 P 4	*AV	372-4	20.19
5 P 2	*LKYF	383-2	22.52
2 P 3	*AVP	372-3	23.39
4P1	*YARKL	375-1	24.14
3P	*EFVGSD	376	25.14
3P1	*EFVGS	376-1	26.64
$3 \mathrm{P4}$	*EF	376-4	28.7
3P2	*EFVG	376-2	28.72
5P3	*LKY	383-3	30.12
5 P 5	*L	383-5	31.01
3 P 3	*EFV	376-3	32.83
4P	*YARKLF	375	34.97
5P1	*LKYFD	383-1	39.02
5 P 4	*LK	383-4	41.05
5P	*LKYFDI	383	43.02

