Supporting Information

Methodology of reversible protein labeling for ratiometric fluorescent measurement

Nobuaki Soh, Daisuke Seto, Koji Nakano, and Toshihiko Imato*

Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan E-mail: imato@cstf.kyushu-u.ac.jp

1. Synthesis of dansyl-NTA-Ni²⁺ complex

Scheme

Synthesis of dansyl-NTA

 N_{α} , N_{α} -Bis(carboxymethyl)-L-lysine hydrate (182 mg, 695 μ mol) and K₂CO₃ (317 mg, 2.30 mmol) acetonitrile/water (4.5 mL, acetonitrile/water, 7/2, were dissolved in v/v) and 5-dimethylaminonaphthalene-1-sulfonyl chloride (dansyl chloride) (300 mg, 1.11 mmol) was then added dropwise to the reaction mixture. Following a reaction for 32 h at room temperature in the dark under N₂ atmosphere, the solvent was removed from the reaction mixture by evaporation. After washing with acetonitrile and THF, the residue was purified using a LH-20 column chromatography (eluent: water) and was then re-purified by preparative TLC (eluent: acetonitrile/water, 2/1, v/v, $R_f = 0.63$) to give 266 mg (77 %) dansyl-NTA as a yellow powder.

¹H-NMR (400 MHz, D₂O): δ (ppm) 0.81-1.32 (m, 6H), 2.24-2.31 (t, 1H), 2.80-2.85 (s, 6H), 2.85-3.10 (m, 6H), 7.31-7.36 (d, 1H), 7.61-7.67 (m, 2H), 8.21-8.29 (m, 2H), 8.42-8.47 (d, 1H). MALDI-TOF MS: Calcd. for C₂₂H₂₉N₃O₈S [M-H]⁻: m/z = 494.16; Found 494.17.

Synthesis of dansyl-NTA-Ni²⁺ complex

NiCl₂ (5.9 mg (46 μ mol) in 6 μ L 0.01 N HCl) was added to dansyl-NTA (10 mg (20 μ mol) in 4 mL water) and the solution was brought to pH 8 by adding 10 mL 0.1 M NaHCO₃. Following reaction for 1 h at room temperature in the dark, the product was purified using a Sep-Pak Plus cartridge (C18 long body) and dried to give 3.9 mg (35 %) dansyl-NTA-Ni²⁺ complex.

¹H-NMR (400 MHz, D₂O): δ (ppm) 2.00-2.44 (m, 7H), 2.46-3.00 (s, 6H), 3.20-3.55 (s, 6H), 3.55-3.66 (q, 2H), 7.20-7.46 (br., 1H), 7.54-7.98 (br., 2H), 8.30-8.68 (br., 3H). MALDI-TOF MS: Calcd. for C₂₂H₂₉N₃NiO₈S [M]⁻: m/z = 550.08; Found 550.18.

2. Synthesis of tags

All peptides (His₆Trp₃, His₆Trp₂, His₆Trp₁, His₆, Trp₃His₆-S-peptide, His₆-S-peptide) were synthesized with an automated peptide synthesizer by standard Fmoc chemistry using corresponding Fmoc amino acids. Crude peptides were purified by reverse-phase high-performance liquid chromatography (HPLC) (column; YMC-pack ODS-A) eluting with acetonitrile/0.1%TFA.

MALDI-TOF MS: His₆Trp₃: Calcd. for $C_{38}H_{47}N_{19}O_7 [M+H]^+$: m/z = 882.40; Found 882.79. His₆Trp₂: Calcd. for $C_{60}H_{67}N_{23}O_9 [M+H]^+$: m/z = 1254.56; Found 1254.20. His₆Trp₁: Calcd. for $C_{49}H_{57}N_{21}O_8 [M+H]^+$: m/z = 1068.48; Found 1068.54. His₆: Calcd. for $C_{38}H_{47}N_{19}O_7 [M+H]^+$: m/z = 882.40; Found 882.79. Trp₃His₆-S-peptide: Calcd. for $C_{142}H_{191}N_{49}O_{32}S [M]^+$: m/z = 3126.46; Found 3124.84. His₆-S-peptide: Calcd. for $C_{109}H_{161}N_{43}O_{29}S [M+H]^+$: m/z = 2569.23; Found 2569.76.

3. Fluorescence spectra

Fluorescence measurements were performed with a steady-state fluorescence instrument (Shimazu, RF-5300PC). To 100 mM phosphate buffer solution (pH 7.4) containing 5 μ M dansyl-NTA-Ni²⁺ complex, 5 mM each peptide (His₆Trp₃, His₆Trp₂, His₆Trp₁, His₆) was added at a final concentration of 30 μ M, and fluorescence spectra were monitored (Figs. S1(a)-S4(a), Fig. 1 shows fluorescence spectra observed after 5 min from the addition of each peptide.). 50 mM ethylenediaminetetraacetic acid (EDTA) was subsequently added to the sample solution at a final concentration of 300 μ M, and fluorescence spectra were monitored (Figs. S1(b)-S4(b)). 100 mM NiCl₂ was subsequently added to the sample solution at a final concentration of 400 μ M, and fluorescence spectra were monitored (Figs. S1(c)-S4(c)). The changes in fluorescent ratio (*F*₄₉₁/*F*₅₃₈) observed in a series of the above procedure (*F*₄₉₁ and *F*₅₃₈ indicate fluorescence intensities at 491 nm and 538 nm, respectively) were calculated (Fig. 2 for His₆Trp₃, Figs. S2(d)-S4(d) for His₆Trp₂, His₆Trp₁, His₆). For fluorescence measurements, an excitation wavelength of 330 nm was used.

Fig. S1 Fluorescence changes observed using His_6Trp_3 . (a) Emission spectra of dansyl-NTA-Ni²⁺ complex (5 μ M) upon the addition of His_6Trp_3 (30 μ M). (b) Emission spectra of dansyl-NTA-Ni²⁺ complex observed by subsequent addition of EDTA (300 μ M) to the sample solution in Fig. S1(a). (c) Emission spectra of dansyl-NTA-Ni²⁺ complex observed by subsequent addition of Ni²⁺ (400 μ M) to the sample solution in Fig. S1(b). Fluorescent ratio (F_{491}/F_{538}) observed in a series of the above procedure is shown in Fig. 2. 100 mM phosphate buffer (pH 7.4) was used as solvent. Excitation wavelength was 330 nm.

Fig. S2 Fluorescence changes observed using His_6Trp_2 . (a) Emission spectra of dansyl-NTA-Ni²⁺ complex (5 μ M) upon the addition of His_6Trp_2 (30 μ M). (b) Emission spectra of dansyl-NTA-Ni²⁺ complex observed by subsequent addition of EDTA (300 μ M) to the sample solution in Fig. S2(a). (c) Emission spectra of dansyl-NTA-Ni²⁺ complex observed by subsequent addition of Ni²⁺ (400 μ M) to the sample solution in Fig. S2(b). (d) Fluorescent ratio (F_{491}/F_{538}) observed in a series of the above procedure. 100 mM phosphate buffer (pH 7.4) was used as solvent. Excitation wavelength was 330 nm.

Fig. S3 Fluorescence changes observed using His_6Trp_1 . (a) Emission spectra of dansyl-NTA-Ni²⁺ complex (5 μ M) upon the addition of His_6Trp_1 (30 μ M). (b) Emission spectra of dansyl-NTA-Ni²⁺ complex observed by subsequent addition of EDTA (300 μ M) to the sample solution in Fig. S3(a). (c) Emission spectra of dansyl-NTA-Ni²⁺ complex observed by subsequent addition of Ni²⁺ (400 μ M) to the sample solution in Fig. S3(b). (d) Fluorescent ratio (F_{491}/F_{538}) observed in a series of the above procedure. 100 mM phosphate buffer (pH 7.4) was used as solvent. Excitation wavelength was 330 nm.

Fig. S4 Fluorescence changes observed using His₆. (a) Emission spectra of dansyl-NTA-Ni²⁺ complex (5 μ M) upon the addition of His₆ (30 μ M). (b) Emission spectra of dansyl-NTA-Ni²⁺ complex observed by subsequent addition of EDTA (300 μ M) to the sample solution in Fig. S4(a). (c) Emission spectra of dansyl-NTA-Ni²⁺ complex observed by subsequent addition of Ni²⁺ (400 μ M) to the sample solution in Fig. S4(b). (d) Fluorescent ratio (F_{491}/F_{538}) observed in a series of the above procedure. 100 mM phosphate buffer (pH 7.4) was used as solvent. Excitation wavelength was 330 nm.

4. Experimental procedures for taking fluorescent images

Fluorescent images were obtained by irradiating samples using a mercury-xenon lamp (Moritex, MUV-202U). Band-pass filters, UV D-33S and Y-46 (Toshiba) were used for the lamp and a camera, respectively. RNase S' was used as the model protein. RNase S' is known as the reconstituted enzyme obtained by mixing equimolar amounts of S-protein and S-peptide (Lys-Glu-Thr-Ala-Ala-Ala-Lys-Phe-Glu-Arg-Gln-His-Met-Asp-Ser) (J. -S., Kim, R. T. Raines, *Protein Science*, 1993, **2**, 348). We thus synthesized S-peptide linked with Trp₃His₆ (Trp₃His₆-S-peptide:

Trp-Trp-His-His-His-His-His-His-Lys-Glu-Thr-Ala-Ala-Ala-Ala-Lys-Phe-Glu-Arg-Gln-His-Met-As p-Ser) and S-peptide linked with His₆ (His₆-S-peptide: His-His-His-His-His-Lys-Glu-Thr-Ala-Ala-Ala-Ala-Lys-Phe-Glu-Arg-Gln-His-Met-Asp-Ser), and prepared Trp₃His₆-tagged RNase S' and His₆-tagged RNase S' by mixing equimolar amounts of S-protein (purchased from Sigma) with Trp₃His₆-S-peptide and His₆-S-peptide, respectively, in 100 mM phosphate buffer solution (pH 7.4). After the addition of dansyl-NTA-Ni²⁺ complex, fluorescent images were taken (Fig. 3 (left) for Trp₃His₆-tagged RNase S', Fig. 3 (right) for His₆-tagged RNase S').