Supporting Information for

Protein-fingerprint data mining of a designed α-helical peptide array

Kenji Usui, Kin-ya Tomizaki, and Hisakazu Mihara*

Department of Bioengineering and the COE21 program, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama 226-8501, Japan

(* Author for correspondence, E-mail: hmihara@bio.titech.ac.jp, Tel: +81-45-924-5756, FAX: +81-45-924-5833)

METHODS

Data treatment for color scale 'protein fingerprints'

Data for 'protein fingerprints (PFPs)' used here were manipulated according to the standard procedure reported previously.^{1.4} The file format used here was portable-pixel-map (.ppm) format. Each grid position was first assigned as three whole numbers corresponding to RGB color-codes representing increment response (0, 0, 0) (full black, minimum increasing value) to (255, 0, 0) (red) to (255, 255, 0) (yellow, maximum increasing value), which corresponds to all the fluorescence change rates (I/I_0) divided into 511 levels. The numbers of the grid were saved as a comma-separated-value (.csv) file including the three (or four) lines of ppm setting at the top of the file. The file was then saved in the portable-pixel-map format by simply adding '.ppm' to the filename. This file was opened by a graphic viewer software, resized and saved in other formats such as bitmap file format (.bmp).

Data manipulation using Euclidean distance and hierarchical clustering analysis (HCA)

The measure used to determine the similarity between two PFPs obtained from different target proteins is Euclidean distance.^{5, 6} This is a common measure when considering the distance between two vectors. Before the Euclidean distance analyses were performed, the PFP must be normalized. Similarity between the normalized PFP patterns is measured by Euclidean distance in multidimensional space defined by each PFP. These should be represented by color-coding (yellow for the highest similarity and black for the lowest) as described in the previous section. Additionally, the hierarchical cluster analysis among the normalized PFPs was conducted. Ward's clustering algorithm was used and the dendrogram was obtained with the analyses of Euclidean distances using the Excel Macro program.⁷ The horizontal axis represents the distance among normalized PFPs (left for PFPs with the highest similarity and right for PFPs with the lowest similarity).

Data manipulation using principal components analysis (PCA)

Principal components analysis (PCA) is a dimension reduction technique, *i.e.* PCA reduces the number of variables (features) to a more manageable size. In this study, Varimax rotation algorithm was used, and the results of analyses were obtained by cgi script program on the web site.⁸

References

- 1 K. Usui, M. Takahashi, K.Nokihara and H. Mihara, Mol. Divers. 2004, 8, 209.
- 2 M. Takahashi, K. Nokihara and H. Mihara, Chem. Biol. 2003, 10, 53.
- 3 K. Usui, T. Ojima, M. Takahashi, K. Nokihara and H. Mihara, *Biopolymers* 2004, 76, 129.
- 4 D. Wahler, F. Badalassi, P. Crotti and J. L. Reymond, Chem. Eur. J., 2002, 8, 3211.
- 5 J. P. Goddard and J. L. Reymond J. Am. Chem. Soc. 2004, **126**, 11116.
- 6 J. Grognux and J. L. Reymond, ChemBioChem 2004, 5, 826.
- 7 http://aoki2.si.gunma-u.ac.jp/lecture/stats-by-excel/vba/html/clustan.html (Japanese).
- 8 http://aoki2.si.gunma-u.ac.jp/BlackBox/BlackBox.html (Japanese).

No.	Name	Sequence	No.	Name	Sequence
1	L8K6	LKKLLKLLKKLLKL	57	L8K4Q2	LKKLLQLLKKLLQL
2	L8K4E2	LKKLLELLKKLLEL	58	L8K3Q3	LOQLLKLLKKLLQL
3	L8K3E3	LEELLKLLKKLLEL	59	L8K2Q4	LQQLLKLLQQLLKL
4	L8K2E4	LEELLKLLEELLKL	60	L8Q6	LOQLLQLLQQLLQL
5	L6A2K6	LKKLLKALKKLLKA	61	L6A2K4Q2	LKKLLQALKKLLQA
6	L4A4K6	LKKLAKALKKLAKA	62	L4A4K4Q2	LKKLAQALKKLAQA
7	L2A6K6	LKKAAKALKKAAKA	63	L2A6K4Q2	LKKAAQALKKAAQA
8	A8K6	AKKAAKAAKKAAKA	64	A8K4Q2	AKKAAQAAKKAAQA
9	L6A2K4E2	LKKLLEALKKLLEA	65	L6A2K3Q3	LQQLLKALKKLLQA
10	L4A4K4E2	LKKLAEALKKLAEA	66	L4A4K3Q3	LQQLAKALKKLAQA
11	L2A6K4E2	LKKAAEALKKAAEA	67	L2A6K3Q3	LQQAAKALKKAAQA
12	A8K4E2	AKKAAEAAKKAAEA	68	A8K3Q3	AQQAAKAAKKAAQA
13	L6A2K3E3	LEELLKALKKLLEA	69	L6A2K2Q4	LQQLLKALQQLLKA
14	L4A4K3E3	LEELAKALKKLAEA	70	L4A4K2Q4	LQQLAKALQQLAKA
15	L2A6K3E3	LEEAAKALKKAAEA	71	L2A6K2Q4	LQQAAKALQQAAKA
16	A8K3E3	AEEAAKAAKKAAEA	72	A8K2Q4	AQQAAKAAQQAAKA
17	L6A2K2E4	LEELLKALEELLKA	73	L6A2Q6	LQQLLQALQQLLQA
18	L4A4K2E4	LEELAKALEELAKA	74	L4A4Q6	LQQLAQALQQLAQA
19	L2A6K2E4	LEEAAKALEEAAKA	75	L2A6Q6	LQQAAQALQQAAQA
20	A8K2E4	AEEAAKAAEEAAKA	76	A8Q6	AQQAAQAAQQAAQA
21	F2L6K6	LKKLLKFLKKLLKF	77	F2L6K4Q2	LKKLLQFLKKLLQF
22	F2L6K4E2	LKKLLEFLKKLLEF	78	F2L6K303	LOQLLKFLKKLLQF
23	F2L6K3E3	LEELLKFLKKLLEF	79	F2L6K2Q4	LOQLEKFLOQLEKF
24	F2L6K2E4	LEELLKFLEELLKF	80	F2L6Q6	LOQLLOFLOQLLOF
25	F4L4K6	LKKLFKFLKKLFKF	81	F4L4K4Q2	LKKLFQFLKKLFQF
26	F4L4K4E2	LKKLFEFLKKLFEF	82	F4L4K3Q3	LOQLFKFLKKLFOF
27	F4L4K3E3	LEELFKFLKKLFEF	83	F4L4K2Q4	LOOLFKFLOOLFKF
28	F4L4K2E4	LEELFKFLEELFKF	84	F4L4Q6	LOOLFOFLOOLFOF
29	L8K4S2	I KKLI SI I KKLI SI	85	L8R6	Î RRÎ I RI Î RRÎ I RI
30	L8K3S3	LSSLLKLLKKLLSL	86	L8R4E2	I RRI I EL I RRI I EL
31	L8K2S4	I SSI I KI I SSI I KI	87	L8R3E3	I FFI I RI I RRI I FI
32	1856		88	L8R2E4	I FFI I RI I FFI I RI
33	L6ĀŽĶĀS2	I KKI I SALKKI I SA	89	L6A2R6	I RRI I RAI RRI I RA
34	444K4S2	I KKI ASAL KKI ASA	90	1 4A4R6	I RRI ARAI RRI ARA
35	2A6K4S2	I KKAASAI KKAASA	91	12A6R6	I RRAARAI RRAARA
36	A8K4S2	AKKAASAAKKAASA	<u>9</u> 2	A8R6	ARRAARAARRAARA
37	1 6A2K353	I SSI I KAI KKI I SA	93	I 6A2R4F2	
38	444K3S3	I SSI AKAI KKI ASA	94	I 4A4R4F2	I RRI AFAI RRI AFA
39	2A6K3S3	I SSAAKAI KKAASA	95	12A6R4F2	I RRAAFAI RRAAFA
4 0	A8K3S3	ASSAAKAAKKAASA	96	A8R4F2	ARRAAFAARRAAFA
41	1 6A2K2S4	I SSI I KAI SSI I KA	97	I 6A2R3F3	I FFI I RAI RRI I FA
4 2	444K2S4	I SSI AKAI SSI AKA	98	14A4R3F3	I FFI ARAI RRI AFA
43	2A6K2S4	I SSAAKAI SSAAKA	99	12A6R3F3	I FFAARAI RRAAFA
44	A8K2S4	ASSAAKAASSAAKA	100	A8R3F3	AFFAARAARRAAFA
45	164256		101	I 6A2R2F4	
46	144456	I SSI ASAI SSI ASA	102	I 4A4R2F4	I FFI ARAI FFI ARA
47	124656		103	1 2A6R2F4	I FFAARAI FFAARA
48	4856	4244224424424	104	ASR2F4	ΔΕΕΔΔΡΔΔΕΕΔΔΡΔ
ΔĞ	F21 6K4S2		105	F2I 6R6	
50	F2L6K3S3		106	F21 6R4F2	
51	F2L6K2S4		107	F2L 6R3F3	
52	F2 656		102	F2 6R2F4	
53	F41 4K4S2		100	FAI AR6	
54	FAL AK262		110		
55	F41 4K2S4		111	FAL ARSES	
56	F41 456		112	F41 4R2F4	
00			112		

Fig. S2 Standard deviations (left) and averages (middle) of the PFP values of each peptide against the seven proteins [calmodulin (CaM), S-100 proteins (S-100), myosin, protein kinase A (PKA), β -lactoglobulin (β -LG), α -amylase, and insulin]. The clustering dendrogram of peptide divergences generated by the analysis of the Euclidean distances (right).