Supplementary Material:

A c-Myc regulatory subnetwork from human transposable element sequences

Jiangrong Wang, Nathan J. Bowen, Leonardo Mariño-Ramírez and I. King Jordan

Supplementary Figure 1. **c-Myc binding site position frequency matrices (PFMs) and sequence logos.** A) V\$CMYC_01 is the TRANSFAC PFM for c-Myc alone. B) V\$CMYC_01 is the TRANSFAC PFM for the c-Myc heterodimer.

	Residue Count			
Position	Α	С	G	т
1	7	1	7	3
2	16	0	2	2
3	1	16	4	0
4	0	21	0	0
5	21	0	0	0
6	0	21	0	0
7	0	0	21	0
8	0	0	0	21
9	0	0	21	0
10	0	13	6	1
11	1	2	0	15
12	3	11	0	1

A) V\$MYC_01

B) V\$MYC_02

	Residue Count			
Position	Α	С	G	т
1	2	0	8	6
2	13	1	3	0
3	0	16	3	0
4	0	19	0	0
5	19	0	0	0
6	0	19	0	0
7	0	0	19	0
8	0	0	0	19
9	0	0	19	0
10	0	7	10	1
11	0	6	0	7
12	0	5	1	3

Supplementary Table 1. Number of TEs that contain c-Myc binding sites for each TE class/family. Based on Clover run with P<0.001.

TE class/family ^a	Observed number ^b	Observed percent ^c	Expected percent ^d
L1	173	21.2%	21.9%
L2	115	14.1%	9.7%
LINE other	8	1.0%	1.6%
Alu	108	13.2%	28.1%
MIR	158	19.4%	13.9%
SINE other	9	1.1%	0.1%
DNA	90	11.0%	9.3%
LTR	155	19.0%	15.5%
Total	816	100.00%	100.0%

^aName of TE class or family. LINE other means LINE elements excluding L1 and L2; SINE other means SINE elements excluding Alu and MIR

^bObserved number of TEs in each class/family

^cObserved percent: the observed number of TEs in each class/family divided by the total observed number (816) of TEs containing c-Myc binding sites * 100

^dExpected percent: the total number of TEs in each class/family in human genome divided by the total number of all TEs in human genome * 100

Supplement: TE-derived c-Myc regulatory subnetwork

Wang et al.

Supplementary Figure 2. Family origins and relative ages for human TEs bound by c-Myc. A) Observed versus expected relative percentages of c-Myc binding sites derived from different classes/families of human TEs. Based on Clover run with *P*<0.001. B) Percent divergence from subfamily consensus sequences for human TEs that are bound by c-Myc.

Supplementary Table 2. Over-expressed tissues of c-Myc and TE-derived target genes. Based on permutations test (P value = 0.05).

c-Myc over-expressed tissues	P value
BM-CD105+ endothelial	0.0034
BM-CD34+	0
PB-CD4+ Tcells	0.0007
PB-CD8+ Tcells	0.0086
PB-CD19+ Bcells	0.0007
leukemia lymphoblastic(molt4)	0.0001
721 B lymphoblasts	0
leukemia promyelocytic(hl60)	0.0052
lymphoma Burkitts Daudi	0
leukemia chronic myelogenous(k562)	0.0001
colorectal adenocarcinoma	0.0174
bronchial epithelial cells	0.0001
TE-derived c-Myc target genes' over-expressed tissues	P value
fetal brain	0.036
whole brain	0.009
prefrontal cortex	0
amygdala	0.001
hypothalamus	0
thalamus	0
spinal cord	0.003
BM-CD33+ myeloid	0
BM-CD34+	0
whole blood	0
PB-BDCA4+ dentritic cells	0
PB-CD14+ monocytes	0
PB-CD56+ NKCells	0
PB-CD4+ Tcells	0.001
PB-CD8+ Tcells	0
PB-CD19+ Bcells	0
721 B lymphoblasts	0
lymphoma Burkitts Raji	0
lymphoma Burkitts Daudi	0
thyroid	0.003
smooth muscle	0
placenta	0.019

Supplementary Figure 3. **Over-expression of c-Myc and TE-derived target genes.** Based on permutations test. A) Example of a comparison between randomly permuted 721 B lymphoblast expression levels and observed c-Myc and TE-derived c-Myc target genes 721 B lymphoblast expression levels. B) Results of the permutation test for c-Myc across all 79 tissues [-In*P*-values]. C) Results of the permutation test for TE-derived c-Myc taget genes across all 79 tissues [-In*P*-values]. Significance threshold levels are indicated for panels B & C.

Supplementary Table 3. Enriched annotations of target genes derived from specific **TE-class/family.** Based on gene set enrichment analysis using MsigDB.

Genes with Alu derived c-Myc binding sites			
Functional annotations	P value		
Biopolymer metabolic process	4.78E-19		
Nucleus	1.58E-17		
Nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	8.04E-14		
Biopolymer modification	4.48E-12		
Cytoplasm	4.92E-12		
Protein metabolic process	1.05E-11		
Protein modification process	1.91E-11		
RNA metabolic process	3.22E-9		
Post translational protein modification	4.45E-9		
Stem cell embryonic up	3.08E-8		
Genes with L1 derived c-Myc binding sites			
Functional annotations	P value		
Targets of MicroRNA TTGCACT, MIR-130A, MIR-301, MIR-130B	2.42E-9		
Down-regulated at any timepoint following treatment of XPB/CS fibroblasts with 3 $\ensuremath{J}\xspace{-1mu}$ UVC	1.49E-8		
Targets of MicroRNA GCACTTT, MIR-17-5P, MIR-20A, MIR-106A, MIR-106B, MIR-20B, MIR-519D	1.59E-7		
Up-regulated in mouse hematopoietic late progenitors from adult bone marrow	1.09E-6		
Kinase activity	1.16E-5		
Nucleus	1.36E-5		
Chromatin modification	1.98E-5		
Protein serine threonine kinase activity	2.88E-5		
Transferase activity transferring phosphorus containing groups	3.06E-5		
Targets of MicroRNA GTGCAAT, MIR-25, MIR-32, MIR-92, MIR-363, MIR-367	3.25E-5		
Targets of MicroRNA CTATGCA, MIR-153	4.14E-5		

Supplementary Table 3 (Continued). Enriched annotations of target genes derived from specific TE-class/family. Based on gene set enrichment analysis using MsigDB.

Genes with L2 derived c-Myc binding sites			
Functional annotations	P value		
Lymphoma and immune response expression clusters (Module_126)	1.63E-7		
Targets of MicroRNA AAGTCCA, MIR-422B, MIR-422A	5.44E-7		
Cytoplasm	7.07E-7		
Downregulated in correlation with overt Alzheimer's Disearse, in the CA1 region of the hippocampus	9.83E-7		
Enriched in mouse neural stem cells, compared to differentiated brain and bone marrow cells	2.08E-6		
Plasma membrane	2.55E-6		
Targets of MicroRNA ACATTCC, MIR-1, MIR-206	4.7E-6		
Membrane	5.85E-6		
Genes with promoter regions around transcription start site containing the motif which matches annotation for MAZ: MYC-associated zinc finger protein	9.7E-6		
Enriched in mouse embryonic stem cells, compared to differentiated brain and bone marrow cells	3.34E-5		
Plasma membrane	4.25E-5		
Neighborhood of MAX	4.47E-5		
Transport	5.92E-5		
Genes with MIR derived c-Myc binding sites			
Functional annotations	P value		
Cytoplasm	2.81E-6		
Membrane	3.77E-6		
Module_188 (Clinical annotaion: B lymphoma is enriched in this module)	5.25E-6		
Receptor activity	1.6E-5		
Biopolymer metabolic process	1.91E-5		
Protein metabolic process	3.02E-5		
Nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	3.4E-5		
Nucleus	3.91E-5		

Supplementary Table 3 (Continued). Enriched annotations of target genes derived from specific TE-class/family. Based on gene set enrichment analysis using MsigDB.

Genes with DNA derived c-Myc binding sites				
Functional annotations	P value			
Down-regulated at any timepoint following treatment of XPB/TTD fibroblasts with 3 J/m^2 UVC	3.96E-7			
Targets of MicroRNA AATGTGA, MIR-23A, MIR-23B	1.45E-5			
Phosphoric monoester hydrolase activity	6.04E-5			
Up-regulated in correlation with overt Alzheimer's Disease in the CA1 region of the hippocampus	7.91E-5			
Downregulated by both Et-743 and Pt-650 in HCT116 cells	7.99E-5			
Genes involved in MAPK signaling pathway	1.21E-4			
Targets of MicroRNA TGCACTG, MIR-148A, MIR-152, MIR-148B	2.72E-4			
Genes up-regulated in PMNs upon migration to skin lesions	4E-4			
Double stranded RNA binding	4.67E-4			
Enriched in mouse neural stem cells, compared to differentiated brain and bone marrow cells	4.92E-4			
Genes with LTR derived c-Myc binding sites				
Functional annotations	P value			
Down-regulated at any timepoint following treatment of XPB/CS fibroblasts with 3 J/m^{2} UVC	1.75E-8			
Cytoplasm	8.3E-8			
Targets of MicroRNA TGAATGT, MIR-181A, MIR-181B, MIR-181C, MIR-181D	9.77E-6			
Targets of MicroRNA TAGCTTT, MIR-9	1.15E-5			
Targets of MicroRNA AAGCACA, MIR-218	2.36E-5			
Targets of MicroRNA CATTTCA, MIR-203	3.6E-5			
Genes whose expression is induced in human mast cells by lipopolysaccharide treatment	4.77E-5			
Targets of MicroRNA CAGTATT, MIR-200B, MIR-200C, MIR-429	6.2E-5			
Module_136 (Clinical annotaion: B lymphoma is enriched in this module)	6.61E-5			
Targets of MicroRNA ATGCAGT, MIR-217	1.08E-4			
Targets of MicroRNA TGTGCCTT, MIR-506	1.5E-4			
Genes with promoter regions around transcription start site containing the motif GGGCGGR which matches annotaion for SP1.	1.59E-4			
Up-regulated in fibroblasts at 6 hours following treatment with iterferon-alpha	2.01E-4			
Targets of MicroRNA TGTTTAC, MIR-30A-5p, MIR-30C, MIR-30D, MIR-30B, MIR-	2.23E-4			

Supplementary Table 4. PCC between differentially expressed TE-derived target genes and c-Myc

Gene Symbol & TE class/family	PCC	t	<i>P</i> value (Student's t-test)
PSMA5_Alu	0.63	6.03	1.54E-07
GORASP2_Alu	0.62	5.91	2.35E-07
XRCC5_Alu	0.61	5.79	3.71E-07
MAP4_Alu	0.43	3.51	925E-04
GNAI2_Alu	-0.63	-6.04	1.50E-07
ADD1_Alu	-0.54	-4.72	1.696E-05
SLC29A1_Alu	0.77	8.88	3.83E-12
DKC1_Alu	0.64	6.13	1.04E-07
VBP1_Alu	0.62	5.77	4.01E-07
KIAA0247_Alu	-0.58	-5.19	3.20E-06
OIP5_Alu	0.48	4.00	1.90E-04
AKAP1_Alu	0.79	9.60	2.84E-13
RBBP8_Alu	0.48	3.97	2.13E-04
SLC23A2_Alu	-0.40	-3.27	1.89E-03
DPM1_Alu	0.60	5.46	1.22E-06
LSM1_Alu	0.50	4.22	9.56E-05
JAK1_L1	-0.59	-5.43	1.38E-06
LRPPRC_L1	0.80	9.68	2.16E-13
TRIO_L1	-0.51	-4.37	5.77E-05
BAZ1B_L1	0.54	4.67	2.05E-05
MTAP_L1	0.70	7.19	2.06E-09
PRKCB1_L1	-0.52	-4.51	3.54E-05
RBBP8_L1	0.48	3.97	2.13E-04
ADARB1_L1	-0.46	-3.80	3.69E-04
ABCC4_L1	0.48	4.00	1.94E-04
MAN2A1_L1	-0.47	-3.96	2.19E-04
SPTLC2_L1	-0.38	-3.01	3.98E-03

Supplementary Table 4(Continued). **PCC between differentially expressed TE-derived target genes and c-Myc**

Gene Symbol & TE class/family	PCC	t	<i>P</i> value (Student's t-test)
SLC20A1_MIR	0.46	3.80	3.75E-04
ITPR1_MIR	-0.66	-6.50	2.65E-08
CTSO_MIR	-0.40	-3.21	2.25E-03
MCCC2_MIR	0.73	7.83	1.86E-10
PGK1_MIR	0.55	4.82	1.22E-05
UROS_MIR	0.60	5.58	8.11E-07
SLC7A1_MIR	0.66	6.47	2.95E-08
ERH_MIR	0.63	5.99	1.77E-07
AKT2_MIR	0.60	5.54	9.27E-07
HCLS1_MIR	-0.63	-5.89	2.53E-07
ZNF330_MIR	0.70	7.19	2.01E-09
NOLC1_L2	0.83	10.75	4.89E-15
PRKCB1_L2	-0.52	-4.51	3.54E-05
POLR2F_L2	0.53	4.58	2.82E-05
CD151_L2	0.23	1.75	8.66E-02
VAMP2_L2	-0.59	-5.41	1.47E-06
PPT1_DNA	0.59	5.31	2.15E-06
XRCC2_DNA	0.53	4.58	2.79E-05
DDX10_DNA	0.74	8.06	7.82E-11
HELZ_DNA	-0.59	-5.42	1.42E-06
AFG3L2_DNA	0.68	6.73	1.11E-08
ADARB1_DNA	-0.46	-3.80	3.68E-04
FCGR2A_LTR	-0.47	-3.86	3.04E-04
SELL_LTR	-0.59	-5.37	1.73E-06
SNX3_LTR	-0.45	-3.75	4.30E-04
LAIR1_LTR	-0.41	-3.32	1.60E-03

Supplementary Table 5. Enriched annotations for differentially expressed target genes derived from specific TE class/family. Based on gene set enrichment analysis using MsigDB.

Genes with MIR derived c-Myc binding sites				
Functional annotations	Overlapping genes	P value		
Up-regulated by UV-B light in normal human epidermal keratinocytes	ITPR1 PGK1 ZNF330	1.39E-5		
G-alpha-q activates phospholipase C, resulting in calcium influx and increasing protein kinase C activity	ITPR1 AKT2	2.63E-5		
Genes related to PIP3 signaling in B lymphocytes	ITPR1 AKT2	4.37E-5		
Gi and Go proteins are members of the same family that transducer cell signals through both their alpha and beta subunits	ITPR1 AKT2	4.37E-5		
Members of the BCR (B cell antigen receptor) signaling pathway	ITPR1 AKT2	7.17E-5		
Genes with L1 derived c-Myc binding sites				
Functional annotations	Overlapping genes	P value		
Down-regulated following treatment of XPB/CS fibroblasts with 3J/m^2 UVC	LRPPRC TRIO ADARB1 MAN2A1 MTAP	4.89E-8		
EGF pathway	PRKCB1 JAK1	2.44E-5		
PDGF pathway	PRKCB1 JAK1	2.44E-5		
Genes up-regulated in fatal/refractory diffuse B-cell lymphoma and down-regulated in cured diffuse B-cell lymphoma	LRPPRC PRKCB1	4.62E-5		
Genes with Alu derived c-Myc binding sites				
Functional annotations	Overlapping genes	P value		
Down-regulated in response to glucose starvation	XRCC5 PSMA5 MAP4 OIP5 GORASP2	3.82E-9		
Nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	XRCC5 SLC29A1 SLC23A2 LSM1 RBBP8 DKC1	5.54E-6		
Down-regulated in response to leusine starvation	XRCC5 PSMA5 SLC29A1	4.86E-5		

Supplementary Figure 4. Multiple alignment of all AluSx elements containing c-Myc binding sites.

TGGTA-AAACCCTGTCTCTACTAAAAATACAAA-AATTAGCCAAGTG	GGTGGCACGTGCCTTTTAATCCCAGCTACTCTGGAGGCTGAGGCAC	AGAATTGCTTGAAGCCAGGAGGTGAAGGTTGCAGCCAGCCAAG
TAGTG-GAGCCCTGTCTCTATGAAAAATACAAA-AA-AC	TAGCACGTGCCTTGTAGTCC-AGCTACTCAGGAGGCTGAGGTAG	JAGTAGGAGAATTGCTTGAACCCAGGAGGTAGAGGTTGCAGTGAGCCAAG
CGGTG-AAACCTACTAAAAATACAAA-A-TTAGCTGGGTG	GGTGCCACGTGCCTTGTAATCCCAGCTACTCAAGAGGCTGAGGCAG	JAGAATTGCTCAGACCCAGGAGATGGAGGTTGTGGTGAGCCAAG
TGGCA-AAACCCCCGCCACTACTAAAAATACAAA-GATTAGCCGGGCG	TGGAGCACGTGCTTTGTAATCCCAGGTACTCAGAAGGCTGAGGCAC	AGATTCGCTTGAACCCAGGAGGCGGAGGCTGCAGTGAGCCAAG
TGGCA-AAACCCCCTTTCTACTAAAGATACAAA-AATTAGCCAGGTG	GATGGCAGGCACCT-GTAATCTCAGCTACTTGGGAGACTAAGGCAT	AGGATCACTTGAGCCCAGGAGGCAGAGGTTACAATGAACTGAG
TGGTA-AAACCTCGTCTCTACTAAAAAACACAAA-AATTAGCCAGGCG	GGTAGCACGTGCCTTATAATCCCAGCTACTCAGGAGGCTGAGGCAG	ATAATTGCTTGAATCCAGGGGGGGGGAAGTTGCAGTGAGCTGAG
TGGCA-AAACCCCGTCTCTACCAAAAAA-TTTAGCTGGGCA	GGTAGCACGTGCCTTGTGATCCCAGCTATTCAGGAAGCTGAGGCAC	NGAATCGCTTGAGCCCGGGAGACAGAGGTTGCAGTGAGCTGAG
TGATG-AAACCCTGTCTCTACTAAAAATACAAA-TATTAACCGGACA	AGTAGCACGTGCCTTTTTAATTCCGGCTACTCCGGAGGCTGAGGCAC	IAGACTGCTCTAACCCAGGAGGCGGAGGTTGCAATGAGCTGAA
TGGTG-AAACCCTGTCTCTACTAAAAACACAAA-AATTAGCCAGGC	GGTGGCACGTGCCTTGTGATCCCAGCTACTCAGGAGGCTGAGGCAG	AGAACC-CTTGAACCTGGGAGGCAGAGGTTGCAGTGAGCCGAG
TGGTGGAAACCCCTTCTCTACTAAAAATATAAAAATTAGTTAGGCG	GCTGGTGCATG-CCTGTAATCGCAGCTACTTGGGAGGCTGAGGCAA	AGAATCACTTGAACCCAGGAGGCGGAGGTTGCAGTGAGCCGAG
TGGTG-AAACCCCATCTCTACTAAAGATACAGAAATTAGCTGGGCA	GGTGGCACGTGGCTTGTAATCCCAGCTATTGGGGAGGCTGAGGCAG	JAGAATCGTTTGAACCCAGGAGCTGGAGGTTGCAGTGAGCCAAG
TGGTG-AAACCCTGTCTCTACTAAAAATACAAAAAATTTTAGCTGGGCA	GGTGCCACGTGCCTTGTAGTGG-GACTACTCTGGCGGCTGAGGGAG	JAGAATCGCTTGAACCTGGTAGGTGGAGGTTGCAGTGAGCTGAG
GGGTG-AAACCCCGTCTCTACTAAAAAACACAAAAAAATTTACCCAGGCA	GGTGGCACGTGCTTTGTAATCCCAGCTACCAGGAGGCTGAGGCAG	AGAATCACTTGAACCCAGGAGGCGGAGGTTACAGTAAACCAAG
TGGCG-AAACCCTGTCTCTACTAAAAATACAAAAAATTAGCCAAGCA	GGTAGCACGTGCCTTGTAATCCCAGCTACTTGGGAGGGTGAGGCAG	AGAATCACTTGAACCCAGGAGGCGGAGGCTGCAATGAGCTGAG
TGGTG-AAACCCTGTCTCTATTAAAAATACAAAAATTAGCTGGGCG	GGTGGCACGTGCCT-GTAATCCCAGCTCCTTGGGAGGCTGAG	AATCACTTGAACTTGGGAGATGGAGGTTGCAGTGAGCCGAG
TGGAG-AAACCCCGTCTCTGCTAAAAATACAAAAAATTAGCTGGGTA	(AGT-GCACGTGCTTTGTAGTTCTAGCTACTCGGGAGGCTGAGGCAG	JAGAATGGCTTGAACCTGGGAGGGGGGGGGGGGGGG
TAGCG-AAATCCCCATCTCTACTAAAAATACAGAAATTAGCCAAGGG	GGTGGCACGTGCTTTGTAATCCCAGCTACTCGGGAGGCTGAGGCAG	JAGAATCGCTTGAACTTGGTAGGTGGAGGTTGCAGTGAGCCGAG
TAAATTAAATTAAATAAATAA-ATAAATAAAAATAAA-TTAGCTGGGTG	AGTGCCACGTGCCTTGTAATCCCAGCTACTCAGGAGGCTGAGGCAG	AGAATCACTTGAACCCAGGAGGCAGAGTTGCAGTGAGCAGAG
chr6 106634084-106634389	GGTGGCACGTGCCT	GGCTGAGGCAC 191
h^{-}	TAGCACGTGCCT TGTAGTCC-AGCTACTCAGGA	GGCTGAGGTAG 178
chr7 96605117 = 96605406	CCTCCCACCTCCCTTCTTATCCCACCTACTCAACA	CCCTCA CCCCAC 177
abr21 44105270-44105677	COTOCOLOCITICIANI CCCASCINCICANON	CCCTCA ATCACCCAC 194
		COCTORATOROGOCAG 194
CHT9_135954613-135954918	TGGAGCACGIGCITIGTAATCCCAGGTACTCAGAA	GGCTGAGGCAC 192
chr11_101893114-101893406	GATGGCAGGCACCT -GTAATCTCAGCTACTTGGGA	GACTAAGGCAT 190
chr19_43783280-43783585	GGTAGCACGTGCCT FATAATCCCAGCTACTCAGGA	GGCTGAGGCAG 191
chrX_154112156-154112453	GGTAGCACGTGCCT IGTGATCCCAGCTATTCAGGA	AGCTGAGGCAC 185
chr19_23047502-23047807	AGTAGCACGTGCCT	GGCTGAGGCAC 191
chr10_7596858-7597236	GGTGGCACGTGCCCCCATAATCTCAGCTACTCGGGA	GGCTGAGGCAA 191
chr17_9826537-9826936	GGTGGCACGTGCCT	GGCTGAGGCAG 191
chrX 40714147-40714438	GCTGGTGCATG-CCTGTAATCGCAGCTACTTGGGA	GGCTGAGGCAA 190
chr19 54780867-54781169	CCTCCCACCTCCCTTCTCCCACCTATTCCCCC	CCCTCA CCCAC 191
abr17 = 52515512 = 52515911	do i doche i doci i di hai eccade i ai i dodde	
	CCTCCCACCTCCCT	CCCTCA =CCCAC 191
chr7 120210512 120210022	GG TGCCACGTGCCT IGTAGTGG-GACTACTCTGGC	GGCTGAGGGAG 191
chr7_138318512-138318823	GGTGCCACGTGCCTIGTAGTGG-GACTACTCTGGC GGTGCCACGTGCTTIGTAATCCCAGCTACTCAGGA	GGCTGAGGGAG 193 GGCTGAGGCAG 193
chr7_138318512-138318823 chr8_97336761-97337062	GGTGCCACGTGCCT IGTAGTGG-GACTACTCTGGC GGTGGCACGTGCTT IGTAATCCCAGCTACTCAGGA GG <mark>TGGCACGTGCTT</mark> IGTAATCTCAGCTACCAGGA	GGCTGAGGGAG 193 GGCTGAGGCAG 193 GGCTGAGGCAG 191
chr7_138318512-138318823 chr8_97336761-97337062 chr7_97850190-97850445	GGTGCCACGTGCCT IGTAGTGG-GACTACTCTGGC GGTGGCACGTGCTT IGTAATCCCAGCTACTCAGGA GGTGGCACGTGCTT IGTAATCTCAGCTACCAGGA GGTAGCACGTGCCT IGTAATCCCAGCTACTTGGGA	GGCTGAGGGAG 193 GGCTGAGGCAG 193 GGCTGAGGCAG 191 GGGTGAGGCAG 130
chr7_138318512-138318823 chr8_97336761-97337062 chr7_97850190-97850445 chrX_153651656-153651962	GGTGCCACGTGCCT IGTAGTGG-GACTACTCTGGC GGTGGCACGTGCTT IGTAATCCCAGCTACTCAGGA GGTGGCACGTGCTT IGTAATCCCAGCTACCAGGA GGTAGCACGTGCCT IGTAATCCCAGCTACTTGGGA GGTGGCACGTGCCT -GTAATCCCAGCTCCTTGGGA	GGCTGAGGGAG 193 GGCTGAGGCAG 193 GGCTGAGGCAG 191 GGGTGAGGCAG 130 GGCTGAGCCAG 130
chr7_138318512-138318823 chr8_97336761-97337062 chr7_97850190-97850445 chrX_153651656-153651962 chr12_57246394-57246669	GGTGGCACGTGCCT IGTAGTGG-GACTACTCTGGC GGTGGCACGTGCTT IGTAATCCCAGCTACTCAGGA GGTGGCACGTGCTT IGTAATCTCAGCTACCAGGA GGTGGCACGTGCCT IGTAATCCCAGCTACTTGGGA GGTGGCACGTGCCT -GTAATCCCAGCTACTTGGGA AGT-GCACGTGCTT IGTAGTTCTAGCTACTCGGGA	GGCTGAGGCAG 193 GGCTGAGGCAG 193 GGCTGAGGCAG 191 GGGTGAGCCAG 130 GGCTGAG 187 GGCTGAGCCAG 157
chr7_138318512-138318823 chr8_97336761-97337062 chr7_97850190-97850445 chrX_153651656-153651962 chr12_57246394-57246669 chr13_31102575-31102879	GGTGCCACGTGCCT IGTAGTGG-GACTACTCTGGC GGTGGCACGTGCTT IGTAATCCCAGCTACTCAGGA GGTGGCACGTGCTT IGTAATCTCAGCTACCAGGA GGTGGCACGTGCCT IGTAATCCCAGCTACTTGGGA GGTGGCACGTGCCT -GTAATCCCAGCTACTTGGGA AGT-GCACGTGCTT IGTAGTCTAGCTACTCGGGA GGTGGCACGTGCTT IGTAATCCCAGCTACTCGGGA	GGCTGAGGCAG 193 GGCTGAGGCAG 193 GGCTGAGGCAG 191 GGGTGAGGCAG 130 GGCTGAGGCAG 157 GGCTGAGGCAG 191
chr7_138318512-138318823 chr8_97336761-97337062 chr7_97850190-97850445 chrX_153651656-153651962 chr12_57246394-57246669 chr13_31102575-31102879 chr19_2094063-2094229	GGTGCCACGTGCCT IGTAGTGG-GACTACTCTGGC GGTGGCACGTGCTT IGTAATCCCAGGCTACTCAGGA GGTGGCACGTGCTT IGTAATCTCAGCTACCAGGA GGTGGCACGTGCCT IGTAATCCCAGCTACTTGGGA AGT-GCACGTGCCT IGTAATCCCAGCTACTCGGGA GGTGGCACGTGCCT IGTAGTTCTAGCTACTCGGGA GGTGGCACGTGCCT IGTAGTCCCAGCTACTCGGA	GGCTGAGGGAG 193 GGCTGAGGCAG 193 GGCTGAGGCAG 191 GGGTGAGGCAG 130 GGCTGAGGCAG 157 GGCTGAGGCAG 157 AGCTGAGGCAG 191 AGCTGAGGCAG 58
chr7_138318512-138318823 chr8_97336761-97337062 chr7_97850190-97850445 chrX_153651656-153651962 chr12_57246394-57246669 chr13_31102575-31102879 chr19_2094063-2094229 chr1_8633557-8633752	GGTGCCACGTGCCT IGTAATCCCAGCTATTGGG GGTGCACGTGCTT IGTAATCCCAGCTACTCAGGA GGTGGCACGTGCTT IGTAATCTCAGCTACCAGGA GGTGGCACGTGCCT IGTAATCCCAGCTACTTGGGA AGT-GCACGTGCCT IGTAATCCCAGCTACTTGGGA GGTGGCACGTGCTT IGTAATCCCAGCTACTCGGGA GGTGGCACGTGCTT IGTAATCCCAGCTACTCGGGA GGTGGCACGTGCCT IGTAATCCCAGCTACTCGGA	GGCTGAGGGAG 193 GGCTGAGGCAG 193 GGCTGAGGCAG 191 GGGTGAGGCAG 130 GGCTGAGGCAG 157 GGCTGAGGCAG 157 GGCTGAGGCAG 191 AGCTGAGGCAG 58 GGCTGAGGCAG 95

C-Myc binding sites

Additional files provided as Supplementary Information. Three BED format text files are provided so that the primary data can be visualized with the UCSC Genome Browser.

PotentialGeneTargets.bed Human genome reference sequence (hg18) coordinates and RefSeq identifiers for the 1,550 genes with proximal TE-derived c-Myc binding sites.

TEsBoundbycMyc_0.01.bed Human genome reference sequence (hg18) coordinates for 4,564 TE sequences experimentally characterized to be bound by c-Myc. 0.01 refers to the *P*-value threshold used by Clover to identify c-Myc binding site motifs.

TEsBoundbycMyc_0.001.bed Human genome reference sequence (hg18) coordinates for 816 TE sequences experimentally characterized to be bound by c-Myc. 0.001 refers to the *P*-value threshold used by Clover to identify c-Myc binding site motifs.