Supplementary Information

An integrated one step system to extract, analyze and annotate all relevant information from image-

based cell screening of chemical libraries

Obdulia Rabal, Wolfgang Link, Beatriz G. Serelde, James R. Bischoff and Julen Oyarzabal^{*}

Experimental Therapeutics Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.

Table of Contents

Supplementary Table S1	2
Supplementary Table S2	
Supplementary Table S3	5
Supplementary Table S4	6
Supplementary Table S5	7
Supplementary Figure S1	
Supplementary Figure S2	9
Supplementary Figure S3	9

Supplementary Table S1- Cellular features collected by AttoVision software within BD Pathway Bioimager.

#	Cellular Feature	Definition
1	Nucleus Pixels	Number of pixels of the nuclear region (Nuclear Area)
2	Nucleus	Number of pixels on the inner and outer boundaries of the nuclei.
3	DAPI Intensity	Average pixel intensity within the nuclear region on Ch1 (DAPI)
4	Cytoplasm Pixels	Number of pixels of the cytoplasmic region
5	Cytoplasm Verticies	Number of pixels on the inner and outer boundaries of the cytoplasm
6	GFP cyt Intensity	Average pixel intensity within the cytoplasmic region on Ch2 (GFP)
7	GFP nucl Intensity	Average pixel intensity within the nuclear region on Ch2 (GFP)
8	Nucleus W	Bounding Box Width of the nuclear region
9	Nucleus H	Bounding Box Height of the nuclear region
10	Cytoplasm W	Bounding Box Width of the cytoplasmic region
11	Cvtoplasm H	Bounding Box Height of the cytoplasmic region

Supplementary Table S2- Cellular features collected by HCS tool for automated image analysis.

#	Cellular Feature	Definition
1	nuclear plus afp SumOfPixelIntensities	Sum of pixel intensities within the nucleus and cytoplasm on Ch2 (GFP)
2	nuclear plus gfp SumOfSquaredPixelIntensities	Sum of squared pixel intensities within the nucleus and cytoplasm on Ch2 (GFP)
3	nuclear plus gfp SumOf3rdPowerPixelIntensities	Sum of 3 rd Power Pixel Intensities within the nucleus and cytoplasm on Ch2 (GFP)
4	nuclear_plus_gfp_SumOf4thPowerPixeIIntensities	Sum of 4th Power Pixel Intensities within the nucleus and cytoplasm on Ch2 (GFP)
5	nuclear_plus_gfp_PixeIIntensityMean	Average Pixel Intensity within the nucleus and cytoplasm on Ch2 (GFP)
6	nuclear_plus_gfp_PixeIIntensityVariance	Variance in pixel intensity within the nucleus and cytoplasm on Ch2 (GFP)
7	nuclear_gfp_SumOfPixelIntensities	Sum of pixel intensities within the nucleus on Ch2 (GFP)
8	nuclear_gfp_SumOfSquaredPixelIntensities	Sum of squared pixel intensities within the nucleus on Ch2 (GFP)
9	nuclear_gfp_SumOf3rdPowerPixelIntensities	Sum of 3 rd Power Pixel Intensities within the nucleus on Ch2 (GFP)
10	nuclear_gfp_SumOf4thPowerPixelIntensities	Sum of 4th Power Pixel Intensities within the nucleus on Ch2 (GFP)
11	nuclear_gfp_PixelIntensityMean	Average Pixel Intensity within the nucleus on Ch2 (GFP)
12	nuclear_gfp_PixelIntensityVariance	Variance in pixel intensity within the nucleus on Ch2 (GFP)
13	nuclear_plus_dapi_SumOfPixelIntensities	Sum of pixel intensities within the nucleus and cytoplasm on Ch1 (DAPI)
14	nuclear_plus_dapi_SumOfSquaredPixelIntensities	Sum of squared pixel intensities within the nucleus and cytoplasm on Ch1 (DAPI)
15	nuclear_plus_dapi_SumOf3rdPowerPixeIIntensities	Sum of 3 rd Power Pixel Intensities within the nucleus and cytoplasm on Ch1 (DAPI)
16	nuclear_plus_dapi_SumOf4thPowerPixeIIntensities	Sum of 4th Power Pixel Intensities within the nucleus and cytoplasm on Ch1 (DAPI)
17	nuclear_plus_dapi_PixelIntensityMean	Average Pixel Intensity within the nucleus and cytoplasm on Ch1 (DAPI)
18	nuclear_plus_dapi_PixelIntensityVariance	Variance in pixel intensity within the nucleus and cytoplasm on Ch1 (DAPI)
19	nuclear_dapi_SumOfPixelIntensities	Sum of pixel intensities within the nucleus on Ch1 (DAPI)
20	nuclear_dapi_SumOfSquaredPixeIIntensities	Sum of squared pixel intensities within the nucleus on Ch1 (DAPI)
21	nuclear_dapi_SumOf3rdPowerPixeIIntensities	Sum of 3 th Power Pixel Intensities within the nucleus on Ch1 (DAPI)
22	nuclear_dapi_SumOt4thPowerPixeIIntensities	Sum of 4th Power Pixel Intensities within the nucleus on Ch1 (DAPI)
23	nuclear_dapi_PixelintensityMean	Average Pixel Intensity within the nucleus on Ch1 (DAPI)
24	nuclear_dapi_PixelIntensityVariance	Variance in pixel intensity within the nucleus on Ch1 (DAPI)
25	nuclear_BlobArea	Nuclear Area (pixels)
20		
21		Nuclear Circularity
2ŏ 20	nuclear_BoundingBoxWid(N	Nuclear Dounding Box Width
29		Nuclear Dounding Dox Height Diamatar of the sirely of the same area as publicus
30	nuclear_EquivalentDiameter	Diameter of the circle of the same area as nucleus

 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	nuclear_ConvexArea nuclear_Solidity nuclear_FormFactor nuclear_DistanceToNearestNeighborCentroid nuclear_DistanceToNearestNeighborBoundary nuclear_dapi_SumOfPixelIntensities_T nuclear_dapi_SumOfSquaredPixelIntensities_T nuclear_dapi_SumOf3rdPowerPixelIntensities_T nuclear_dapi_SumOf4thPowerPixelIntensities_T nuclear_dapi_PixelIntensityMean_T nuclear_dapi_PixelIntensityVariance_T nuclear_BlobArea_T nuclear_BlobPerimeter_T nuclear_BlobCircularity_T nuclear_EquivalentDiameter_T nuclear_Solidity_T	Area of the convex hull (area of the smallest convex set of pixels containing the entire nuclear object) Nuclear area divided by the area of the convex hull Measure of nuclear circularity. (4*pi*area/perimeter squared) Distance to nearest nucleus (Centroid - Centroid) Distance to nearest nucleus (Boundary - Boundary) Sum of pixel intensities within the nucleus on Ch1 (DAPI) with Autothresholding segmentation Sum of squared pixel intensities within the nucleus on Ch1 (DAPI) with Autothresholding Sum of 3 rd Power Pixel Intensities within the nucleus on Ch1 (DAPI) with Autothresholding Sum of 4th Power Pixel Intensities within the nucleus on Ch1 (DAPI) with Autothresholding Average Pixel Intensity within the nucleus on Ch1 (DAPI) with Autothresholding Average Pixel Intensity within the nucleus on Ch1 (DAPI) with Autothresholding Nuclear Area (pixels) with Autothresholding segmentation Nuclear Perimeter with Autothresholding segmentation Nuclear circularity with Autothresholding segmentation Diameter of the circle of the same area as nucleus with Autothresholding segmentation Area of the convex hull with Autothresholding segmentation Nuclear area divided by the area of the convex hull with Autothresholding segmentation
46 47	nuclear_ConvexArea_T nuclear_Solidity_T	Area of the convex hull with Autothresholding segmentation Nuclear area divided by the area of the convex hull with Autothresholding segmentation
48	nuclear_FormFactor_T	Measure of nuclear circularity. (4*pi*area/perimeter squared) with Autothresholding

Supplementary Table S3 – Results from BD Pathway Bioimager

	Total Compounds
Total Compounds in HCS	33,992
Primary Hits identified with BD Pathway	448
Hits from VS analysis complementing primary Hits	91
Confirmed secondary Hits	228
PI3K Inhibitors	54

Supplementary Table S3 Footnote

Of the 33,992 compounds tested, 448 (1.32%) met the active criterion defined using the BD Pathway Bioimager and produced 60% inhibition of Akt-mediated FOXO-GFP translocation. To maximize, in terms of quality and quantity, the information obtained from this screening; once hits from primary screening were selected an additional step was performed: identification of false positives (FP) and false negatives (FN). Thus, all hits from primary screening together with those initially non-hits rescued by virtual screening (VS) techniques were further confirmed in a second HCS round. Virtual screening, and visual inspection of a number of wells, complemented the initial hit pool with 91 additional compounds. For those 228 confirmed positive hits, PI3K inhibitory activity was experimentally estimated through its corresponding biochemical assay¹⁴

Supplementary Table S4– *p*-Values obtained for each of the 13 cytological features initially considered for cytotoxicity assessment for the 168-membered library. Different Student's *t*-tests were conducted for different plates, comparing reference cytotoxic compound *vs* untreated (controls) wells and non-cytotoxic compounds *vs* untreated (controls). Bold values show significance level of 1% or better (*p*-value < 0.01). 7 cytological features (*in bold*) were finally selected.

	Cytotoxic vs untreated			Non-cytotoxic <i>vs</i> untreated		
	Plate I	Plate II	Plate III	Plate I	Plate II	Plate III
	(n=14)	(n=9)	(n=13)	(n=92)	(n=19)	(n=83)
Cytological Feature (All nuclear)	P	Р	Р	P	Р	Р
nuclear_dapi_PixelIntensityVariance_T_Mean	4.E-15	1.E-03	2.E-06	0.92	0.03	0.38
nuclear_EquivalentDiameter_T_Mean	9.E-10	6.E-03	3.E-08	0.94	0.11	0.31
nuclear_BlobPerimeter_T_Mean	3.E-09	4.E-03	5.E-09	0.94	0.20	0.17
nuclear_BlobArea_T_Mean	3.E-09	4.E-03	4.E-08	0.77	0.10	0.30
nuclear_ConvexArea_T_Mean	5.E-09	4.E-03	2.E-08	0.75	0.12	0.27
nuclear_dapi_PixelIntensityMean_T_Mean	1.E-07	3.E-04	4.E-08	0.99	0.43	0.14
Cell_Density_Mean	3.E-05	1.E-03	4.E-04	0.10	0.90	0.29
nuclear_dapi_SumOf4thPowerPixeIIntensities_T_Mean	5.E-06	0.04	2.E-07	0.81	0.81	0.15
nuclear_BlobCircularity_T_Mean	2.E-05	0.02	3.E-05	0.86	0.45	0.45
nuclear_FormFactor_T_Mean	2.E-05	0.02	3.E-05	0.86	0.45	0.45
nuclear_dapi_SumOf3rdPowerPixeIIntensities_T_Mean	4.E-05	0.15	4.E-07	0.86	0.59	0.16
nuclear_dapi_SumOfSquaredPixeIIntensities_T_Mean	4.E-03	0.98	3.E-06	0.92	0.34	0.19
nuclear_dapi_SumOfPixelIntensities_T_Mean	0.09	0.07	0.01	0.95	0.15	0.35
nuclear_Solidity_T_Mean	0.77	0.73	0.04	0.84	0.32	0.89

Supplementary Table S5 - Confusion matrix, kappa values, sensitivity and specificity obtained for each of the different definitions established to classify compounds as cytotoxic or not from the 168-membered reference library. Each of the seven significant cytological features found with Student's *t*-test, was defined as outlier if the mean value for a well was 1, 1.5, 2 or 3 standard deviations (SD) away from the mean values of the negative controls. In different models, a minimum number of outlier features was required to classify compounds as cytotoxic or not and the corresponding confusion matrix resulting from classification was calculated.

	Number of outlier features required	TP	ΤN	FP	FN	Kappa	Sensitivity	Specificity
1 SD	7 6 5 4 3 2 1	12 12 12 12 12 12 12 12	155 141 137 119 116 102 67	1 15 19 37 40 54 89	0 0 0 0 0 0	0.96 0.57 0.51 0.31 0.29 0.21 0.10	100 100 100 100 100 100 100	99 90 88 76 74 65 43
1.5 SD	7 6 5 4 3 2 1	12 12 12 12 12 12 12	156 144 142 134 127 117 89	0 12 14 22 29 39 67	0 0 0 0 0 0	1.00 0.72 0.70 0.63 0.58 0.53 0.42	100 100 100 100 100 100 100	100 92 91 86 81 75 57
2 SD	7 6 5 4 3 2 1	11 12 12 12 12 12 12	156 152 147 141 140 126 103	0 4 9 15 16 30 53	1 0 0 0 0 0	0.95 0.86 0.76 0.69 0.68 0.57 0.47	92 100 100 100 100 100	100 97 94 90 90 81 66
3 SD	7 6 5 4 3 2 1	9 12 12 12 12 12 12	156 152 154 151 150 141 123	3 2 5 6 15 33	3 0 0 0 0 0	0.82 0.86 0.92 0.84 0.82 0.69 0.56	75 100 100 100 100 100 100	98 99 97 96 90 79

II. Supplementary Figures

Supplementary Fig. S1. Key cytological features plot for phenotypic profiling as cytotoxic compound plot for the 12 reference cytotoxic compounds (blue dots) and for the 156 non-cytotoxic compounds and negative controls (black crosses); clearly this is playing a role.

		ŀ	Actual Value					
		Positiv	e Negativ	e Total				
Prediction	Positive	TP	P FP	p'				
Outcome	Negative	FN	I TN	n'				
	Total	р	n	N				

Supplementary Fig. S2. Confusion Matrix, with the number of true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN).

Supplementary Fig. S3. Screenshot of the Pipeline Pilot protocol. Many steps are collapsed into different subprotocols, some of them are exemplified in those gray-background images.