Supplementary Data

	Position of Substitution										
Notation	I2 / R ₁	A6 / R ₂	A2 / R ₃								
$I_{2OH} A^{6OH}_{NH2}$	Н	Н	Н								
$I_{2OH} A^{6OH}_{NS}$	Н	Н	SO ₃ ⁻								
I _{20H} A ^{6S} _{NS}	Н	SO ₃ ⁻	SO ₃ ⁻								
$I_{2S} A^{6S}_{NH2}$	SO ₃ ⁻	SO ₃ ⁻	Н								
$I_{2S} A^{6S}_{NAc}$	SO ₃ ⁻	SO ₃ ⁻	COCH ₃								
$I_{2S} A6^{OH}_{NS}$	SO ₃ ⁻	Н	SO ₃								
$I_{2OH} A^{6S}_{NH2}$	Н	SO ₃ ⁻	Н								
I _{2OH} A ^{6S} _{NAc}	Н	SO ₃ ⁻	COCH ₃								
$I_{2OH} A^{6OH}_{NAc}$	Н	Н	COCH ₃								
$I_{2S} A^{6OH}_{NH2}$	SO3 ⁻	Н	Н								
I _{2S} NAc	SO ₃ ⁻	Н	COCH ₃								
$I_{2S} A^{6S}{}_{NS}$	SO ₃ ⁻	SO ₃ ⁻	SO ₃								

Supplementary Table 1 Systematically modified heparins used in the analysis.

....

I-N refers to the Nth position of iduronate and A-N to the Nth position of glucosamine (aminosugar) residues respectively.

Supplementary Table 2 ¹³C chemical Shift assignments (ppm) for 12 chemically modified heparins

_	1	2	3	4	5	6	7	8	9	10	11	12
A1	95.8	98.2	98.1	93.7	96.6	100.0	97.9	97.1	97.1	97.2	96.8	99.5
A2	57.0	60.5	60.3	57.1	56.2	60.8	57.6	56.2	56.2	58.0	56.6	60.7
A3	71.8	72.5	72.4	70.9	73.0	72.4	73.9	72.5	72.3	73.5	72.9	72.5
A4	79.0	80.2	80.1	78.2	79.3	80.5	79.6	79.6	79.6	80.1	80.6	78.8
A5	74.3	73.5	71.5	72.0	72.3	73.8	72.7	71.8	73.7	74.2	74.2	72.0
A6	61.9	62.4	68.7	68.8	69.6	62.6	69.0	68.8	62.3	62.8	62.9	69.2
11	104.5	104.3	104.6	101.3	102.2	102	104.8	104.6	104.3	101.9	102.3	102.1
12	71.7	72.2	71.1	75.3	76.8	77.6	72.9	72.0	72.5	76.0	76.6	78.9
13	71.8	71.5	70.4	65.4	67.3	70.7	72.4	71.4	72.2	67.0	67.1	72.1
4	77.4	77.8	77.2	73.0	74.2	78.7	77.8	77.0	77.1	74.4	74.1	79.0
15	71.8	72.2	71.2	69.8	70.8	71.4	72.8	71.9	72.6	70.1	70.6	72.3

Supplementary Table 3. The relative contribution of the first three principal components (c1 (accounting for 38.8 % of the variance in the data), c2 (22.3 %) and c3 (18.5 %) to the range of 13 C chemical shift values observed at the linkage positions among the 12 modified polysaccharides.

Position	Component 1	Component 1 Component 2						
A1	0.05	0.87	0.04					
A4	0.02	0.19	0.51					
l1	0.98	0.02	-0.01					
14	0.52	0.84	0.02					

Supplementary Figure 1. Greater diversity is evident in A1--I4 linkages then I-1--A-4 linkages. Analysis of variations in individual glycosidic linkages from combinatorial modelling of all possible sequences containing from 2 to 16 residues, A-1, I-4 and I-1, A-4 individually. **A.** (A-1, I-4), **D.** (I-1, A-4) linkage variation against number of sulfates, **B.** (A-1, I-4), **E.** (I-1, A-4) kernel density plots of the linkage variation distributions (in **A.** and **D).** and **C.** (A-1, I-4), **F.** (I-1, A-4) variation of the linkage distance at every level of sulfation for 2-16 residues.

Supplementary Table 4 Analysis of the variation in individual glycosidic linkages from combinatorial modelling of all possible oligosaccharide stretches from 2 to 16 residues, linkages A-1, I-4 and I-1, A-4 individually.

				Distan	ice	Sulfation					
residues	Mean	Skew	Max. D.	M.V.D ^a	N° of S that M.V.D occurs at	Mean	Skew	Max. n° of S			
2	0.77	-0.31	1.32	1.16	1.0	1.5	0.0	3.0			
4	1.22	-0.82	1.86	1.64	2.0	3.0	0.0	6.0			
6	1.54	-0.88	2.28	2.01	3.0	4.5	0.0	9.0			
8	1.81	-0.80	2.63	2.32	4.0	6.0	0.0	12.0			
10	2.04	-0.70	2.94	2.60	5.0	7.5	0.0	15.0			
12	2.24	-0.62	3.23	2.84	6.0	9.0	0.0	18.0			
14	2.43	-0.56	3.48	3.07	7.0	10.5	0.0	21.0			
16	2.60	-0.51	3.72	3.28	8.0	12.0	0.0	24.0			

A1-I4

11-14

		Sulfation						
residues	Mean	Skew	Max. D.	M.V.D ^a	Mean	Skew	Max. n° of S	
2	0.68	-0.42	1.12	0.78	1.0	1.5	0.0	3.0
4	1.05	-0.80	1.58	1.11	2.0	3.0	0.0	6.0
6	1.32	-0.78	1.94	1.35	3.0	4.5	0.0	9.0
8	1.54	-0.69	2.24	1.56	4.0	6.0	0.0	12.0
10	1.74	-0.60	2.50	1.75	5.0	7.5	0.0	15.0
12	1.91	-0.54	2.74	1.92	6.0	9.0	0.0	18.0
14	2.07	-0.49	2.96	2.07	7.0	10.5	0.0	21.0
16	2.21	-0.45	3.16	2.21	8.0	12.0	0.0	24.0

^a Maximum Variation in Distance (M.V.D), D_{max}-D_{min} at a specific level of sulfation

Supplementary Figure 2. Distribution of linkage variation (*r.s.s.* distances) along all possible sequence combinations for; **A.** For stretches of 4 residues defined by I-A-I'-A' (superimposed) and **B.** For stretches of 6 residues defined by I-A-I'-A" (superimposed). The main substitutions influencing the glycosidic linkage positions are also shown in the schematic.

Supplementary Figure 3 Variability of linkage positions in all possible tetrasaccharide stretches at each linkage position. The vertical axis is the relative magnitude of variation in linkage ¹³C chemical shift values.

Supplementary Table 5 Breakdown of individual linkage variation for all possible sequences of 4 residues

	14-1		11-1		A4-1		A1-1		14-2		11-2		A4-2		A1-2	
	SEQ	VAR	SEQ	VAR	SEQ	VAR	SEQ	VAR	SEQ	VAR	SEQ	VAR	SEQ	VAR	SEQ	VAR
	000-XXX	0.0001	000-XXX	0.0001	000-0XX	0.0001	000-0XX	0.0001	X00-000	0.0001	X00-000	0.0001	XXX-000	0.0001	XXX-000	0.0001
	001-XXX	0.0160	001-XXX	0.0080	000-1XX 100-0XX	0.0076	100-0XX 000-1XX	0.0236	X01-000 X00-001	0.0081	X01-000 X00-001	0.0041	XXX-100	0.0150	XXX-001	0.0430
	100-XXX	0.5230	010-XXX	0.0180	100-1XX	0.0150	001-0XX	0.0430	X10-001	0.0160	X01-001	0.0080	XXX-010	0.1920	XXX-100	0.0470
	101-XXX	0.5232	011-XXX	0.0197	010-0XX	0.1920	100-1XX	0.0470	X10-000 X00-010	0.4196	X10-000 X00-010	0.0091	XXX-110	0.1926	XXX-101	0.0637
	010-XXX	0.8390	100-XXX	0.9750	010-1XX 110-0XX	0.1923	101-0XX 001-1XX	0.0534	X11-000 X00-011	0.4196	X11-000	0.0099	XXX-001	0.5120	XXX-010	0.8670
ĺ	011-XXX	0.8392	101-XXX	0.9750	101-100	0.1926	101-1XX	0.0637	X01-010 X10-001	0.4275	X01-010 X10-001	0.0130	XXX-101	0.5122	XXX-011	0.8681
ĺ	110-XXX	0.9887	110-XXX	0.9752	001-0XX	0.5120	010-0XX	0.8670	X11-001 X01-011	0.4276	X11-001 X01-011	0.0138	XXX-011	0.5468	XXX-110	0.8683
ċ	111-XXX	0.9888	111-XXX	0.9752	101-0XX 001-1XX	0.5121	110-0XX 010-0XX	0.8676	X00-100	0.5230	X10-010	0.0180	XXX-111	0.5470	XXX-111	0.8693
					101-1XX	0.5122	011-0XX	0.8681	X01-100 X00-101	0.5231	X11-010 X10-011	0.0188				
					011-0XX	0.5468	110-1XX	0.8683	X01-101	0.5232	X11-011	0.0197				
					111-0XX 011-1XX	0.5469	111-0XX 011-1XX	0.8687	X10-100	0.7558	X00-100	0.9750				
					111-1XX	0.5470	111-1XX	0.8693	X11-100 X00-111	0.7559	X01-100 X00-101	0.9750				
									X0X-110 X1X-101	0.7560	X01-101	0.9750				
									X11-101 X01-111	0.7560	X10-100 X00-110	0.9751				
									X10-010	0.8390	X11-100 X01-110 X10-101 X00-111	0.9751				
									X11-010 X10-011	0.8391	X10-110	0.9752				
									X11-011	0.8392	X10-111	0.9752				
I									X10-110	0.9887	X11-111	0.9752				
I									X11-110	0.9887						
I									X10-111	0.5007						
t									X11-111	0.9888			ļ			
-	000->	XXX	000-2	XXX	000-0	DXX	000-	OXX	X00-	000	X00-	000	XXX-	000	XXX-	000
ır	11X-)	11X-XXX 11X-XXX X1X-XXX X1X-XX		XXX	X1X-11X		XXX-1XX		XXX-X11 XXX		XXX-	X1X				

Supplementary Figure 4A Dissimilarities between all stretches of 4 residues running in the same direction. The geometric patterning is the results of the grouping of structures along the axes and systematic changes between members of the groups (diagonal lines). The data are symmetrical about the diagonal [running bottom left to top right], with zero dissimilarity on the diagonal when each sequence is compared with itself. Deep blue-purple

(representing 0.0) signifies complete similarity, while red (representing 1.0) signifies complete dissimilarity.

Supplementary Figure 4B Dissimilarities between all stretches of 4 residues running in opposite directions. The geometric patterning is the result of the grouping of structures along the axes. XXX-XXX' signifies the reverse structures, so the linkage order runs A1-4, A4-4, I1-3, I4-3, A1-2, A4-2, I1-1, I4-1 instead of I4-1, I1-1, A4-2, A1-2, I4-3, I1-3, A4-4, A1-4.

Dissimilarity Calculation

Dissimilarities were calculated using SPSS [proximity algorithm], which is a comparison of Euclidean distances from an origin between two samples, the values being scaled to the range 0 to 1, (with 0 being similar and 1 disimilar). So, for example, the dissimilarities between two dissaccahrides I4a, I1a, A4a, A1a and I4b, I1b, A4b, A1b is:

$$Da, b = \sqrt{(I4a - I4b)^2 + (I1a - I1b)^2 + (A4a - A4b)^2 + (A1a - A1b)^2}$$

In general;

$$D_{ij}^2 = \sum_{\nu=1}^n (x_i - x_j)^2$$