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Supplementary Experimental Methods 
 
Hepatotoxic drugs 
Drugs with idiosyncratic and/or inflammation-associated hepatotoxicity and corresponding 
'comparison' compounds were classified as described previously.1  Clarithromycin serves as a 
less, but still hepatotoxic, 'comparison' compound to telithromycin.2, 3  Compounds were 
obtained from Sigma (St. Louis, MO; cimetidine, ranitidine, levofloxacin, buspirone, nefazodone, 
aspirin, nimesulide, chlorpromazine, nortriptyline, clomipramine, and riluzole), Sequoia 
Research Products (Pangbourne, UK; clarithromycin and telithromycin), or Pfizer's chemical 
sample bank (Groton, CT; trovafloxacin).  Drugs were dosed at therapeutically appropriate drug 
exposure levels were defined by average plasma maximum concentration (Cmax) values 
observed in humans upon single- or multi-dose administration at commonly recommended 
therapeutic doses.  Cmax values were previously1, 4 estimated from a combination of literature 
searches and available databases.  A concentration of 100*Cmax, encompassing a scaling factor 
to account for human population pharmacokinetic and toxicodynamic variabilities, was 
considered as a therapeutically relevant dosing limit for each drug, as previously discussed.1, 4 
100*Cmax concentrations correspond to the following molecular concentrations: 1.5 mM 
cimetidine, 142 µM ranitidine, 1.6 mM levofloxacin, 770 µM trovafloxacin, 0.46 µM buspirone, 86 
µM nefazodone, 552 µM aspirin, 2.1 mM nimesulide, 334 µM clarithromycin, 277 µM 
telithromycin, 111 µM chlorpromazine, 10 µM nortriptyline, 13 µM clomipramine, and 107 µM 
riluzole.   
 
Multiplexed phosphoprotein assays 
Phosphoprotein signaling was quantified using multiplexed bead-based Luminex assays.  Cells 
were plated and treated as described above.  Cell lysates were collected at 0 and 20 min and 4, 
24, and 48 h following drug and/or cytokine stimulation.  At the desired time point, cells were 
placed on ice and culture medium was removed.  Matrigel overlays were partially dissolved by 
adding ice cold PBS for 15 min at 4°C.  PBS was removed and cells were lysed with 
Phosphoprotein Lysis Buffer (Bio-Rad, Hercules, CA) for 20 min at 4°C.  Lysates were collected 
by scrapping and vigorous pipetting.  Lysates were clarified by centrifugation at 16,000g for 15 
min at 4°C.  Clarified lysates were analyzed using a bicinchonicic assay (Pierce, Rockford, IL) to 
determine the total protein concentration.  In each culture plate, a well without cells was 
maintained, lysed, and analyzed to calculate the protein contribution from the Matrigel overlay 
alone and estimate the cellular protein concentration in the other wells.  Bio-Plex bead-based 
assays (Bio-Rad) were used to quantify the following 17 phosphoproteins: p-Akt (Ser473), p-
CREB (Ser133), p-c-Jun (Ser63), p-GSK-3α/β (Ser21/Ser9), p-IκB-α (Ser32/Ser36), p-IRS-1 
(Ser636/Ser639), p-ERK1/2 (Thr202/Tyr204, Thr185/Tyr187), p-Histone H3 (Ser10), p-HSP27 (Ser78), p-
JNK (Thr183/Tyr185), p-MEK1 (Ser217/Ser221), p-STAT3 (Ser727), p-STAT6 (Tyr641), p-p38 
(Thr180/Tyr182), p-p53 (Ser15), p-p70 S6 kinase (Thr421/Ser424), and p-p90 RSK (Thr359/Ser363).  
Bio-Plex assays were conducted per manufacturer's recommendations on a Luminex 200 
instrument (Luminex) with protein lysates loaded at 10 µg per well in technical duplicate, which 
were averaged for each biological sample.  Multiple positive control treatments were loaded on 
each assay plate to linearly scale raw fluorescence data to self-consistent relative values. 
Phosphoprotein assays were validated for high specificity to known activating conditions (Fig. 
S1). 
 
Kinase inhibitor evaluation and selection 
Kinase inhibitors were evaluated for efficacy and toxicity in human hepatocytes (from donor #3) 
over a range of concentrations at seven 8× serial dilution concentrations from 20 µM (20 µM, 
2.5 µM, 0.31 µM, 39 nM, 4.9 nM, 0.61 nM, 76 pM).  To evaluate MEK kinase inhibitor efficacy, 
human hepatocytes were pretreated with inhibitor for 1 h before treatment with 100 ng ml-1 



recombinant human TGF-α (R&D Systems, Minneapolis, MN) for 15 min and then were assayed 
for p-ERK1/2 activation using a bead-based phosphoprotein assay.  To evaluate p38 kinase 
inhibitor efficacy, human hepatocytes were pretreated with inhibitor for 1 h before treatment with 
100 ng ml-1 recombinant human TNF (R&D Systems) for 15 min and then were assayed for p-
HSP27 activation using a bead-based phosphoprotein assay.  To evaluate MEK and p38 kinase 
inhibitor toxicity, inhibitors were added at 1× final concentrations in fresh medium for 48 h, and 
then medium samples were assayed for LDH release.  LDH results were normalized to wells 
from the same culture plate lysed in 1% Triton X for 10 min, and values were reported as % cell 
death (with the lysed samples assumed to represent 100% cell death).  The following kinase 
inhibitors/concentrations were selected for their potent signaling inhibition and minimal toxicity 
and were used to perturb kinase activities in drug- and cytokine co-treatment experiments: 10 
µM U0126, 1 µM PD325901, 1 µM PHA-666859, and 1 nM PHA-818637 (see Fig. S8). 
 
Collection and normalization of signal-response data compendia 
We collected a cue-signal-response (CSR) data compendia in human hepatocytes from two 
separate donors.  In the initial data compendium (donor #1), human hepatocytes were treated 
with 66 different combinations of 11 'drug' conditions (six compounds with idiosyncratic 
hepatotoxicity and/or inflammation-associated hepatic cytotoxicity, four corresponding 
'comparison' compounds, and a DMSO control) and six 'cytokine' conditions (no cytokine, IL-1α, 
LPS, TNF, IL-6, and a mix containing all three cytokines plus LPS).  To broadly measure a 
diverse set of key phosphoprotein activities mechanistically connected to numerous drug- 
and/or cytokine-induced signaling pathways, we quantitatively assayed the aforementioned 17 
phosphoproteins at both early (0 and 20 min) and delayed time-points (4, 24, and 48 h) 
following drug and/or cytokine stimulation.  In this initial data compendium, single biological 
replicates were used for both phosphoprotein and LDH assays.  The total number of individual 
phosphoprotein signaling measurements in the initial compendium was 4488 (66 conditions × 
17 phosphoproteins × 4 time-points × 1 biological replicate). 
 In the second data compendium (donor #2), human hepatocytes were treated with 14 
different combinations of seven 'drug' conditions (two hepatoxicants used in initial compendium, 
four idiosyncratic hepatoxicants not used in the initial compendium, and a DMSO control) and 
two 'cytokine' conditions (no cytokine and the 3-cytokine/LPS mix).  In this second compendium, 
quantitative phosphoprotein assays were focused on a reduced set of six highly informative 
signals (p-MEK1, p-ERK1/2, p-Akt, p-70 S6K, p-p38, p-HSP27).  These phosphoproteins were 
assayed at the same time-points as in the CSR from donor #1, but with some drug/cytokine co-
treatment conditions (all those containing the DMSO control and trovafloxacin) also assayed at 
1 and 12 h post-stimulation.  Biological triplicates were used for both phosphoprotein and LDH 
assays.  The total number of individual phosphoprotein signaling measurements in the second 
compendium was 1008 (14 conditions × 6 phosphoproteins × 4 time-points × 3 biological 
replicates). 
 Phosphoprotein data was fold-change normalized to untreated samples (at 0 min) for 
each phosphoprotein assay and separately for each hepatocyte donor.  LDH release data was 
fold-change normalized to untreated samples at 48 h post-drug and/or cytokine stimulation 
separately for each hepatocyte donor.  CSR data compendia normalization and fusion was 
performed using the DataRail toolbox5 for Matlab (The Mathworks, Inc., Natick, MA).  These 
normalized data are available in Supplementary Data. 
 
Metric extraction and scaling 
For each phosphoprotein signaling time-course, two time-dependent signaling metrics6 were 
extracted: (i) the integral, or area-under-the-curve, for the entire time-course, and (ii) the 
average of the late time-points (4-48 h), reflecting the steady-state signaling level.  These were 
added to the four time-points (20 min and 4, 24, and 48 h) to yield six signaling metrics for each 



assayed phosphoprotein.  For each compendia, the signaling metrics from all measured 
phosphoproteins were then fused into a signaling network data matrix (X).  Separately, the 
toxicity response data were cast into a vector (Y), with both X and Y arrayed across all 
treatment conditions.  In the compendium from donor #1, X was a matrix of 66 rows of 
treatments and 102 columns (17 phosphoproteins × 6 metrics) of signaling metrics, and Y was a 
vector of 66 rows of treatments and single column (LDH release measured at 48 h).  Before 
modeling, all columns in the signaling data matrix and response vector were separately mean-
centered and scaled to unit-variance to non-dimensionalize different assay measurement 
dynamic ranges.7  In modeling test data sets not present in model training, scaling parameters 
from the training data set were used to scale the test data. 
 
Signal-response data modeling through orthogonal partial-least squares regression  
To relate the measured signaling and cell death response data, we assumed a linear 
relationship between the two data sets, such that: 

, 
where X is the signaling network data matrix, Y is the cell death response vector, and B is a 
vector of regression coefficients that reflect how each phosphoprotein signaling metric 
contributes to cell death.  Framed as such, the signaling matrix X is a block of independent 
variables and the response vector Y is a block of dependent variables.  Since the number of 
signaling metrics (columns of X) exceeds the number of treatment conditions (rows of X), an 
unique solution to this linear regression problem cannot be identified.  Thus, we implemented 
partial least-squares regression (PLSR) to solve this regression problem.  Instead of performing 
the linear regression in the original multi-dimensional data space, PLSR casts the problem in a 
principal-component space and regresses principal components-based coefficients associated 
with independent and dependent variables8.  The calculation of principal components-based 
regression coefficients (or, loadings) is biased towards those signaling variables that are most 
covariant with the response data and to optimize prediction accuracy of the response data in 
cross-validation. 

We implemented PLSR using the NIPALS algorithm in SIMCA-P software (Umetrics, 
Inc., Kinnelon, NJ) following standard methods6-12, with some modifications.  All models were 
generated using four principal components under standard optimization criteria.8  Model 
calibration was conducted using leave-one-out cross-validation, and model uncertainties were 
calculated by jack-knifing.13  Calibrated models were subjected to a principal-component space 
linear transformation by rotating the projection of the single cell death response variable 
completely into the first principal-component, thus yielding an orthogonal PLSR (OPLSR) 
model14 (see Fig. S2), to allow for simplified interpretation of model loadings and scores.  
Signaling metric model loadings were calculated using the mean-centered regression 
coefficients wa*ca from the a-th OPLSR principal-component.6 The accuracy of model 
predictions for both training and test data were assessed using a Pearson correlation coefficient 
(R)12 and a model fitness7, 11 parameter (R2): 

, 

where Predictedi is the predicted cell death value of the i-th treatment condition, Observedi is 
the experimentally observed cell death value of the i-th treatment condition, and n is the total 



number of treatment conditions.  This assessment of model fitness postulates a one-to-one 
equivalence between observed and predicted response values, and is more stringent than a 
simple correlation assessment that does not penalize for quantitatively inaccurate predictions 
that are nonetheless qualitatively correlative.11  An R2 value of 1 corresponds to a perfect fit 
between observed and predicted responses.  An R2 value of 0 corresponds a model break-
point.11  Negative R2 values imply highly inaccurate model predictions. 
 To interpret the contributions of various signaling pathways to drug- and/or cytokine-
induced hepatic cytotoxicity, an initial OPLSR model was trained on the 17-phosphoprotein, 66-
condition CSR data compendium from human hepatocyte donor #1, and demonstrated good 
model fitness (R2 = 0.92) of cross-validated predictions.  All models were regressed against the 
LDH release data measured at t = 48 h, as models of the LDH release response at earlier time-
points were poorly fit (data not shown). 
 
Model reduction 
To identify the relative importance of individual phosphoprotein signaling metrics, the 
information content of each signaling metric was assessed by its variable importance of 
projection (VIP) score15: 

, 

where K is the total number of signaling metrics, wa,k is the weight of the k-th metric for principal 
component a, A is the total number of principal components, and SSa is the sum of squares 
explained by principal component a .  Signaling metrics with a VIP > 1 have significant 
importance in the model and metrics with a VIP << 1 significantly lack unique information in the 
model.7, 15   

To reduce the initial 17-phosphoprotein model, phosphoproteins and all six of their 
associated signaling metrics were removed from the model step-wise in order of the lowest 
average VIP score across all six metrics.  This model reduction approach yielded a set of 4-to-6-
phosphoprotein models (R2 = 0.87-0.91) that retained the model fitness of the full 17-
phosphoprotein model (R2 = 0.92; Fig. 3D).  The robustness of this model reduction approach 
was examined by testing the ability of a reduced 6-phosphoprotein model, trained on CSR data 
from human hepatocyte donor #1, to accurately predict signal-response relationships in a 14-
condition, 6-phosphoprotein CSR data compendium collected from human hepatocyte donor #2. 
 
Model predictions of kinase inhibitor effects on drug- and cytokine-induced hepatic 
cytotoxicity 
To make a priori predictions of kinase inhibitor perturbation of drug- and/or cytokine-induced 
hepatocellular death responses, a set of 'computationally inhibited' signaling time-courses was 
generated by reducing the activation levels of the specific phosphoprotein signaling molecules 
targeted by the kinase inhibitor of interest.  These time courses were generated for the 
treatment conditions of DMSO ± cytokine mix and nortriptyline ± cytokine mix, in the presence 
or absence of 10 µM U0126, 1 µM PD325901, 1 µM PHA-666859, and 1 nM PHA-818637.  To 
generate the uninhibited time-courses, mean values across donor #1 and #2 (DMSO ± cytokine 
mix) or from donor #2 only (nortriptyline ± cytokine mix) were used.  For a phosphoprotein 
signals targeted by an inhibitor, the mean observed level at each time-point was reduced by a 
fraction equivalent to the percent signal reduction observed for that inhibitor in the signaling 
inhibition studies in donor #3 (Fig. S8), as in 10, 16.  For MEK inhibitors, the phosphoprotein levels 
of both MEK and ERK at all time-points were reduced by 70% (U0126) and 99% (PD325901), 



but all other signaling proteins were not changed.  For p38 inhibitors, the phosphoprotein levels 
of both p38 and HSP27 at all time-points were reduced by 93% (PHA-666859) and 99% (PHA-
818637), but all other signaling proteins were not changed.  After computationally inhibiting the 
time-point data, the integral and late average metrics were re-calculated.  Predictions of kinase 
inhibitor effects based on these computationally inhibited signaling metric sets were generated 
from two different 6-phosphoprotein OPLSR models (featuring either non- or log-scaled LDH 
release response data) trained on a fused CSR data compendium from both donors #1 and #2. 
Logarithmic scaling of response data can provide more accurate OPLSR model prediction of 
low response level observations, especially for non-uniformly distributed response data sets, by 
removing regression bias to high response conditions (see Fig. S9A-B).  Prediction accuracy 
was assessed by comparing to experimental observations collected in human hepatocytes from 
donor #4 (Fig. S9A-D).



Supplementary Figures 
 

 
 

Figure S1.  Specificity of multiplexed bead-based phosphoprotein assays. Human hepatocytes 
were cultured, treated, and lysed as described in the Experimental section, except insulin was 
removed from the culture medium 24 h before stimulation to allow for maximal activation of 
insulin-related pathways. Cells were stimulated for 20 min with one of the following treatments: 
no treatment, 100 ng ml-1 heregulin (HRG), 100 ng ml-1 epidermal growth factor (EGF), 100 ng 
ml-1 transforming growth factor-α (TGF-α), 2 µM insulin (INS), 100 ng ml-1 tumor necrosis factor-
α (TNF), 20 ng ml-1 interleukin-1α (IL-1α), 20 ng ml-1 interleukin-1β (IL-1β), 50 ng ml-1 
interleukin-4 (IL-4), or 100 ng ml-1 interleukin-6 (IL-6). (A-Q) Lysates were analyzed using 17 
multiplexed phosphoprotein assays, and assay values are reported as fold-changed normalized 
to the untreated samples separately for each assay. Dashed lines for the untreated sample 
values are shown for clarity. Black bars are used for the stimulation leading to the highest signal 
activation for each phosphoprotein. These data show that the 17 phosphoprotein assays 
demonstrate high specificity with regards to stimulation condition.



 
 
 
 
 
 

 
 
Figure S2.  Comparison of partial least-squares regression (PLSR) and orthogonal PLSR 
models. A PLSR model was generated from the training CSR data compendium using the 
NIPALS algorithm in SIMCA-P software following standard methods.6, 8-11 The PLSR model was 
generated using four principal components under standard optimization criteria8, and its model 
scores (A), loadings (B), and cross-validated predictions (C) are plotted. The PLSR model was 
then subjected to a principal component-space linear transformation by rotating the projection 
(in 4-dimension principal component-space, with only the first two PC's plotted in (A) and (B)) of 
the single cell death response variable completely into the first principal component, with the 
model scores and loadings of the 102 phosphoprotein signaling metrics similarly rotated. This 
orthogonal PLSR (OPLSR) model14 allows for simplified interpretation of model scores (D) and 
loadings (E). The OPLSR model demonstrated equivalent cross-validated model predictions 
and model fitness (F) as the original PLSR model (C). 



 
 
 
 

 
 

Figure S3.  The most correlative signaling metrics are poorly predictive of the observed hepatic 
cytotoxicity response. (A-B) In the CSR compendium from donor #1, the single signaling metrics 
most positively (p-HSP27 at t = 4 h; A) and negatively (p-Akt at t = 24 h; B) correlated with the 
observed cell death response (LDH release at t = 48 h) are plotted for all 66 drug-cytokine 
treatment conditions. Phosphoprotein signal levels are reported as fold-change normalized 
values to untreated samples at t = 0. LDH release levels are reported as fold-changed 
normalized values to untreated samples at t = 48 h. One-to-one correlation lines shown for 
clarity. Pearson correlation coefficients (R) are shown in the insets. (C-D) OPLSR models 
trained using these single signaling metrics provide poor model fitness to the observed LDH 
release data.  OPLSR models were trained on either the p-HSP27 at t = 4 h (C) or p-Akt at t = 
24 h (D) phosphoprotein signaling metrics (across all 66 conditions in donor #1).  Model cross-
validated predictions of LDH release are plotted. Model fitness7, 11 was assessed (R2) as 
described in the supplementary Experimental section. Both one-metric OPLSR models show 
poor predictive accuracy (R2 < 0.4). A one-to-one correlation line demonstrating perfect model 
fitness (R2 = 1) is shown for clarity. 



 



Figure S4. (Previous page) OPLSR model loadings and VIP scores. (A-B) Model loadings (A) 
and VIP scores (B) are plotted for all 102 phosphoprotein signaling metrics, with metrics from p-
ERK1/2, p-Akt, p-p70 S6K, and p-HSP27 noted, sorted by loading and VIP score values, 
respectively. Model loadings (A) and VIP scores (A,D) are presented as the mean values ± 
cross-validation standard error, calculated by jack-knifing.13 (C) VIP scores grouped by signaling 
metric, with metrics from p-ERK1/2, p-Akt, p-p70 S6K, and p-HSP27 noted. (D) Model fitness 
sensitivity to the removal of individual phosphoprotein signaling metrics. Model complexity was 
reduced by step-wise removal of the signaling metric with the lowest VIP score. Model fitness7, 

11 (R2, black/left axis) and the VIP score of the removed metric (grey/right axis) are plotted for 
each reduced model. In (B-D), a line (grey color in D) indicating the threshold value of 1 for 
informative VIP scores7, 15 is shown for clarity. In (D), a line (black) indicating the model fitness 
(R2 = 0.92) of the full 102-metric OPLSR is shown for clarity.  

   



 
 
 
 
 
 
 
 

 
 

Figure S5.  A schematic of the drug- and cytokine-induced hepatocellular death signaling 
network (see Fig. 1) highlighting the four 'network gauge' phosphoprotein signals (p-ERK1/2, p-
p70 S6K, p-Akt, and p-HSP27) identified by VIP score-based reduction of the full 17-
phosphoprotein OPLSR model (see Fig. 3D).  



 
 
Figure S6.  Comparison of phosphoprotein and LDH release data in human hepatocyte donors 
#1 and #2. Phosphoprotein and LDH release data were collected and fold-changed normalized 
(separately for each donor/assay) from cultured human hepatocytes from donors #1 and #2 as 
described in Fig. 2 and Fig. 4. Mean values from assays (p-MEK1, p-ERK1/2, p-Akt, p-p70 S6K, 
p-38, p-HSP27, and LDH release) and treatments (DMSO only, the three-cytokine/LPS mix 
only, 334 µM clarithromycin [CLA], CLA + cytokine mix, 770 µM trovafloxacin [TRO], TRO + 
cytokine mix) conducted in both donors are presented, with full data sets shown in Fig. 2 (donor 
#1, n = 1 biological replicate) and Fig. 4 (donor #2, n = 3 biological replicates). 



 
 
Figure S7. ERK and p38 pathways at the nexus of drug/cytokine-induced signaling and drug 
efflux transporter regulation. Interpretations from the OPLSR model of hepatic cytotoxicity 
suggest that the ERK and p38 pathways are activated by drug- and/or cytokine treatments and 
positively regulate the resulting cell death response. Whereas the ERK pathway is generally 
considered pro-survival through its activation of anti-apoptotic effectors such as Bad17, 18, the 
p38 pathway is generally considered pro-apoptotic due to its transcription regulation of effector 
caspases19. Both pathways have been implicated in the regulation of the translocation of 
hepatocyte drug efflux transporters, including the bile salt export pump (BSEP) and the 
conjugate export pump (MRP2), to the bile canaliculi (BC). Consequently, inhibitors of the 
kinase activities of MEK20 and p3821, 22 decrease drug efflux transporter translocation and 
activity, leading to cholestasis upon prolonged administration. Possibly due to their inhibition of 
drug efflux transporter activities or, in the case of ERK, due to their perturbation of apoptosis 
regulatory mechanisms, MEK23, 24 and p3825, 26 inhibitors elicit liver toxicity some cellular and 
animals models and clinical investigations. Further, some idiosyncratic hepatotoxicants (e.g. 
nefazodone27) inhibit BSEP and/or MRP2 activities. This inhibition itself can induce transient 
activation of ERK and p38 signaling and consequently stimulate additional transporter protein 
translocation to the BC to enable recovery of drug efflux capacity. Additionally, activated ERK28 
and p3829 can both positively regulate the metalloproteinase TACE and its proteolytic release of 
TNF.30  TNF is a crucial pro-death cytokine in inflammation-induced drug hepatotoxicity in vivo31, 

32, where its TACE-regulated release by neutrophils is p38-dependent29, and in our in vitro 
drug/cytokine co-treatment system.1  Thus, the experimental perturbation of the ERK and p38 
pathways must be made with careful consideration to their complex, and possibly counter-
acting, functions in response to drug and/or cytokine stimuli. 



 

 
 
Figure S8.  Selection of MEK and p38 kinase inhibitors based on potent signaling inhibition 
efficacy and minimal toxicity in human hepatocytes. MEK (A-D) and p38 (E-H) kinase inhibitors 
were evaluated for efficacy and toxicity in human hepatocytes (from donor #3) over a range of 
concentrations at seven 8× serial dilution concentrations from 20 µM (20 µM, 2.5 µM, 0.31 µM, 
39 nM, 4.9 nM, 0.61 nM, 76 pM). Data are presented as the mean ± s.e.m. of three biological 
replicates. (A-H) To evaluate MEK and p38 kinase inhibitor toxicity, inhibitors were added at 1× 
final concentrations in fresh medium for 48 h, then medium samples were assayed for LDH 
release. LDH results were normalized to wells from the same culture plate lysed in 1% Triton X 
for 10 min, and values were reported as % cell death, with the lysed samples assumed to 
represent 100% cell death. (Note that only 20 µM MEKi-1 elicited significant toxicity.) (A-D) To 
evaluate MEK kinase inhibitor efficacy, human hepatocytes were pretreated with inhibitor for 1 h 
before treatment with 100 ng ml-1 TGF-α for 15 min and then were assayed for p-ERK1/2 
activation. (E-H) To evaluate p38 kinase inhibitor efficacy, human hepatocytes were pretreated 
with inhibitor for 1 h before treatment with 100 ng ml-1 TNF for 15 min and then were assayed 
for p-HSP27 activation. (A-H) Signaling inhibition IC50 values were manually estimated from the 
signaling down-regulation curves by identifying the inhibitor concentrations that elicited half-
maximal phosphoprotein activation. The following kinase inhibitors/ concentrations were 
selected for their potent signaling inhibition and minimal toxicity and were used to perturb kinase 
activities in drug- and cytokine co-treatment experiments (see Fig. 6 and Fig. S9): 10 µM 
U0126, 1 µM PD325901, 1 µM PHA-666859, and 1 nM PHA-818637. At these concentrations, 
these inhibitors yield the following reductions in phosphoprotein signaling: U0126, 70% 
reduction, and PD325901, 99%, for p-MEK1/p-ERK1/2 inhibition; and PHA-666859, 93%, and 
PHA-818637, 99%, for p-p38/p-HSP27 inhibition. 
 



 
 

Figure S9.  Six-phosphoprotein OPLSR model makes qualitatively accurate predictions of the 
effects of MEK and p38 inhibitors in perturbing drug- and cytokine-induced hepatic cytotoxicity. 
To make a priori predictions of a kinase inhibitor perturbation to a drug- and/or cytokine-induced 
hepatocellular death response, 'computationally inhibited' signaling time-courses (based on 
uninhibited signaling data from donors #1 and/or #2, limited to the six phosphoproteins assayed 
in samples from both donors) were generated by reducing the activation time-courses of the 
specific phosphoprotein signaling molecules targeted by a kinase inhibitor by an amount based 
on the inhibitor's experimentally measurement signaling inhibition (in samples from donor #3; 
see Fig. S8). Signaling proteins from pathways not targeted by the kinase inhibitor were left 
unchanged. For example, p-MEK1 and p-ERK1/2 activation time-courses were decreased by 
70% for the MEK inhibitor U0126, but the p-Akt, p-p70 S6K, p-p38, and p-HSP27 were 
unchanged. These computationally inhibited time courses were generated for the treatment 
conditions of DMSO ± cytokine mix (20 ng ml-1 IL-1α, 10 µg ml-1 LPS, 100 ng ml-1 TNF, and 20 
ng ml-1 IL-6) and nortriptyline ± cytokine mix, in the presence or absence of 10 µM U0126, 1 µM 
PD325901, 1 µM PHA-666859, and 1 nM PHA-818637. After computationally inhibiting the 
time-course, the integral and late average metrics were re-calculated. The resultant 
computationally inhibited signaling metric data were used to predict cell death responses from 
OPLSR models trained on a fused (uninhibited) signaling data compendium from donors #1 and 



#2. Model fitness of the predicted inhibitor responses was assessed by comparing to 
experimental measurements collected in human hepatocytes from donor #4. Human 
hepatocytes (from donor #4) were treated with DMSO control ± cytokine mix (C) or 10 µM 
nortriptyline ± cytokine mix (D), in the absence or presence of a kinase inhibitor. To inhibit MEK 
kinase activity, cells were pretreated with 10 µM U0126 or 1 µM PD325901 1 h before 
drug/cytokine stimulation.  To inhibit p38 kinase activity, cells were pretreated with 1 µM PHA-
666859 or 1 nM PHA-818637 1 h before drug/cytokine stimulation. After 24 or 48 h, conditioned 
medium samples were assayed for LDH release. Two different 6-phosphoprotein OPLSR 
models were trained on the fused CSR data compendium from both donors #1 and #2. (A) One 
model was trained using non-scaled cell death response data. Although this OPLSR model 
demonstrated good model fitness7, 11 for the training data (R2 = 0.83), it poorly predicted the 
inhibitor test data (R2 = -0.19) and led to significantly under-predicted cell death responses. (B-
D) A second OPLSR model was generated from the fused training compendium by regressing 
log-scaled cell death response data. The log-scaled model demonstrated reasonable model 
fitness for the training data (R2 = 0.79) but only qualitatively accurate predictions of the test 
computationally inhibited data (R2 = 0.08). Using a less stringent Pearson correlation metric, the 
log-scaled model yielded predictions of the training (R = 0.90) and test inhibition (R = 0.63) data 
sets that were well-correlated with the observed responses. In (A) to (D), test experimental data 
are presented as mean ± s.e.m. of eight biological replicates. In (A) and (B), model-predicted 
responses are presented as the mean prediction ± cross-validation standard error, calculated by 
jack-knifing13, and experimental and prediction uncertainties are not shown for the training data 
for simplicity. In (A) and (B), a one-to-one correlation line demonstrating perfect model fitness 
(R2 = 1) is shown for clarity. In (C) and (D), for experimental data, differences between 
uninhibited and kinase inhibitor pretreatments are labeled as significant (*) if P < 0.05 by a 
Student's t test. 



 
 

 

 

Table S1. Human hepatocyte donor information. 
 

     
 

Donor information and history* 

Donor 
ID Experiment Data 

in 

Culture 
start 
date 

Lot** 

 

Gender, 
age Obesity† 

Smoking, 
drug, 

alcohol 
use 

Disease, 
viral 

infection 

1 CSR training 
data set Fig. 2 05/20/07 Hu4000 

 

Female, 
4 yrs old 

Not 
obese, 

BMI 
unknown 

None 
known 

None 
known†† 

2 CSR test data 
set Fig. 4 10/18/08 Hu0921 

 

Male, 
38 yrs old 

Not 
obese, 
BMI 25 

None 
known 

None 
known 

3 
MEK and p38 

inhibitor 
dosing study 

Fig. S8 10/17/08 Hu0920 

 

Female, 
52 yrs old 

Not 
obese, 
BMI 21 

None 
known 

None 
known 

4 

Kinase 
inhibitor drug-

cytokine 
toxicity study 

Fig. 6 
Fig. S9 11/13/08 Hu0935 

 

Female, 
54 yrs old 

Not 
obese, 
BMI 20 

None 
known 

None 
known 

 
* All donor information provided by CellzDirect, Inc. 
** Lot number assigned by CellzDirect, Inc. 
† BMI = body mass index. A BMI of 30 or greater is generally considered obese. 
†† No known history of or exposure to Hepatitis B, Hepatitis C, cirrhosis, biliary disease or HIV. 
Not serology-tested.
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