Supplementary data

The isolated Cys₂His₂ site in E_c metallothionein mediates metal-specific protein folding

Oksana Iryna Leszczyszyn, Craig Roy J. White and Claudia Andrea Blindauer

- Supplementary Table S1: Observed and theoretical masses for Zn- and Cd-loaded wheat E_{C} species
- Supplementary Table S2: Observed and theoretical masses for Zn-loaded mutant wheat E_c species
- Supplementary Table S3: Chemical shift data for H32C

Supplementary Table S4: NOE-derived distance restraints for MODELLER calculations of H32C mutant.

- Supplementary Figure S1: 2D 1 H NMR data for H32A and H40A in the presence of Zn²⁺
- Supplementary Figure S2: 1D ¹H comparison of Cd-loaded wild-type, H32A, H40A, and H32A/H40A.
- Supplementary Figure S3: Deconvoluted ESI mass spectra for H32C and H40C mutants in the presence of Zn²⁺
- Supplementary Figure S4: ¹H NMR data for H32C and H40C in the presence of Cd²⁺

Table S1: Theoretical and observed masses of neutral zinc- and cadmium-loaded recombinant wheat E_C species. Errors of observed masses are <1.0 Da, except for low-abundance peaks, where the mass error may reach 1.5 Da.

protein	Metalloform	Observed Mass	Theoretical Mass	
	M ₀ -Met	7735.5	7735.7	
WT-apo	M ₀ +Met	7866.4	7866.9	
	M ₀ +DTT	8000.9	8002.7	
	Zn₅ –Met	8051.5	8052.1	
	Zn ₆ – Met	8116.1	8115.5	
	Zn₅+Met	8182.6	8183.3	
WT-Zn	Zn ₆ +Met	8247.8	8246.7	
	Zn ₅ +Met +Tris	8287.1	8286.6	
	Zn ₆ +Met +Tris	8350.7	8350.0	
	Zn ₆ +Met+DTT	8383.4	8383.0	
WT-Cd	Cd ₅ -Met	8287.0	8287.3	
	Cd ₅ +Met	8417.8	8418.5	
	Cd₅Zn +Met	8481.9	8481.8	
	Cd ₆ +Met	8528.8	8528.9	
	Cd ₅ +Met+DTT	8551.7	8554.8	
	Cd₅Zn +DTT	8617.4	8618.1	
	Cd ₆ +Met+DTT	8664.1	8665.2	

Table S2: Theoretical and observed masses of neutral zinc-loaded mutant wheat E_c species. Errors of observed masses are <1.0 Da, except for low-abundance peaks, where the mass error may reach 1.5 Da.

protein	Metalloform	Observed Mass	Theoretical Mass	
	Zn₅ -Met	7986.5	7986.0	
	Zn ₆ -Met	8051.0	8049.4	
	Zn₅+Met	8120.7	8117.2	
	Zn ₆ +Met	8180.1	8180.6	
H32A	Zn₅ +Met+DTT	8252.1	8253.5	
	Zn ₆ +Met +Tris	8285.4	8283.9	
	Zn ₆ +Met+DTT	8318.6	8316.9	
	Zn ₇ +Met+DTT	8380.7	8380.3	
	Zn ₄ -Met	7920.0	7922.6	
H40A	Zn₅ -Met	7985.8	7986.0	
	Zn ₆ -Met	8052.0 ^{b)}	8049.4	
	Zn ₄ +Met	8052.0 ^{b)}	8053.8	
	Zn₅+Met	8120.3	8117.2	
	Zn ₆ +Met	8184.8	8180.6	
	Zn ₆ +Met +Tris	8284.8	8283.9	
	Zn ₆ +Met+DTT	8317.6	8316.9	

	Zn ₇ +Met+DTT	8378.5	8380.3
	Zn ₄ -Met	7854.7	7856.7
	Zn₅ -Met	7921.2	7920.1
	Zn ₄ +Met	7986.8 ^{b)}	7987.9
	Zn ₆ -Met	7986.8 ^{b)}	7983.5
H32A/H40A	Zn₅+Met	8054.7	8051.3
	Zn ₆ +Met	8120.3	8114.77
	Zn₅ +Met+DTT	8186.8	8187.6
	Zn ₆ +Met+DTT	8250.1	8251.0
	Zn ₇ +Met+DTT	8312.6	8314.4
H32C ^{c)}	Zn₅ -Met	8016.1	8018.4
	Zn ₆ -Met	8082.3	8081.8
	Zn₅Cd -Met	8128.7	8128.8
	Zn₅+Met	8146.8	8149.6
	Zn ₆ Cd -Met	8192.8	8192.2
	Zn ₆ +Met	8213.0	8213.0
	Zn₅Cd +Met	8260.6	8260.0
	Zn ₆ Cd +Met	8322.9	8323.4
	Zn ₆ +Met+DTT	8347.7	8349.2
	Zn₅Cd +Met+DTT	8394.9	8396.3
	Zn ₄ -Met	7953.0	7955.0
	Zn₅ -Met	8017.6	8018.4
	Zn₄Cd -Met	8063.4	8065.4
	Zn ₄ +Met	8083.1 ^{b)}	8086.2
	Zn ₆ -Met	8083.1 ^{b)}	8081.8
	Zn₅Cd +Met	8128.1	8128.8
H40C ⁽⁾	Zn₅+Met	8149.6	8149.6
	Zn ₄ Cd +Met	8192.7	8196.6
	Zn ₆ +Met	8214.3	8213.0
	Zn ₅ +Met+DTT	8279.0	8285.8
	Zn ₆ +Met+DTT	8349.0	8349.2
	Zn ₄ Cd +Met+DTT	8324.7	8332.9

Notes:

a) The species -Met+DTT are not considered, as their abundance is expected to be minor, and their masses are similar to the species +Met.

b) These peaks are composed of more than one species. The mass of a Methionine (131.2 Da) and the mass for the addition of 2Zn²⁺-4H⁺ = 126.8 Da are relatively close.
c) Sample contaminated by small amounts of Cd²⁺. This contamination does not affect

conclusions reached in the manuscript.

Table S3. Chemical shifts for H32C mutant of wheat E_C with bound Zn^{2+}	
(700 MHz, 50 mM Tris-D ₁₁ , 50 mM NaCl, 10% D ₂ O, pH 7.3).	

	NH	Η(α)	Η(β)	H(γ), H(δ), H(ε)
GLY1	-	3.72		
CYS2	9.17	4.71	3.02	
			2.83	
CYS2'	9.22	4.71	3.02	
			2.87	
ASP3	n.d.	n.d.	n.d.	
ASP4	8.77	4.40	2.90;2.61	
LYS5	8.63	4.59	1.79	1.34; 1.58
CYS6	7.60	4.45	3.15	
GLY7	8.76	4.54; 3.55		
CYS8	8.83	4.40	3.68; 3.33	
ALA9	8.50	4.14	1.34	
VAL10	8.06	4.19	1.89	0.80
PRO11	-	4.72	2.27; 1.87	1.78; 3.47; 3.56
CYS12	8.40	4.53	3.27; 2.87	
PRO13	-	4.20	2.20; 1.92	2.06; 3.81
GLY14	8.51	4.17; 3.69		
GLY15	8.45	4.01; 3.80		
THR16	8.03	4.26	4.13	1.16
GLY17	8.20	4.15; 3.59		
CYS18	7.18	4.47	2.98; 2.28	
ARG19	8.23	4.34	2.10: 2.00	1.79: 1.72
CYS20	8.46	4.32	2.97: 2.60	-)
THR21	7.71	4.24	4.14	1.19
ARG24	8.07	4.32	1.75: 1.61	-
GLY26	8.40	3.90		
ALA27	8.08	4.27	1.34	
GLY30	8 24	3.93		
GLU31	8 13	4 39	2 06 [.] 1 89	2 24
CYS32	8.38	4 46	2.66	
THR33	9.54	4.36	3.86	1 04
THR34	8 15	4 62	4 01	0.46·4.23(OH)
CYS35	8 41	4 12	3 16. 2 95	0.10, 1.20(011)
GI Y36	9.41	4.04.3.96	0.10, 2.00	
CYS37	7 25	4 58	3 29. 3 00	
GI V38	8 27	4 53 3 58	0.20, 0.00	
GLIBO	8 25	4.53, 5.50	2 09. 1 99	2 46. 2 30
	0.20	4.07	2.00, 1.00	7 10: 7 86
CVS/1	9.15 8.45	4.42	2.33, 2.03	7.10, 7.00
	8.40	3 80. 3 81	5.07, 2.07	
GL142 CVS42	7.52	1 20	2.01	
A SN144	7.52	4.30	2.50	7 11.6 91
	1.24	4.09	2.00	1.44, 0.01
	- 0 EE	4.13	2.23, 2.02	1.92, 5.50, 5.45
	0.00	4.40	3.37, 3.00	
ALA41 CVQ10	0.20	4.23 1 15	1.40 2.21·2.04	
CI V40	9.30 7 70	4.40	J.ZI, Z.94	
	1.10 0.10	4.19, 3.19	1 50. 1 0 4	1 00. 0 65
	0.40	4.09	1.52, 1.34	1.23, 2.03
GLU51	0.41	4.30	2.05; 1.90	2.22
GLY52	8.29	4.15, 3.92		

THR53	8.46	4.59	3.98	1.20
PRO54	-	4.17	2.34	1.87; 3.65
SER55	8.87	4.29	3.93; 3.85	
GLY56	8.92	3.94; 3.81		
ARG57	8.00	4.13	1.78; 1.63	1.54
ALA58	8.52	3.82	1.37	
ASN59	8.51	4.47	2.99; 2.87	7.53; 6.86
ARG60	7.35	4.89	1.94; 1.71	1.72; 1.41
ARG61	8.26	4.10	1.86; 1.82	1.73; 1.69
ALA62	8.58	4.07	1.38	
ASN63	8.07	4.55	3.03; 2.79	7.55; 6.79
CYS64	7.76	4.69	3.07; 2.98	
SER65	9.48	4.82	4.20; 3.60	
CYS66	9.71	4.02	3.00; 2.86	
GLY67	9.05	4.29; 3.83		
ALA69	n.d.	4.27	1.31	
CYS70	7.02	3.96	2.83	
ASN71	8.65	4.95	2.76	7.44; 6.74
CYS72	8.74	4.11	2.92; 2.83	
ALA73	9.21	n.d.	1.48	
SER74	8.45	4.39	3.89	
CYS75	8.27	4.22	2.76	
GLY76	7.61	4.25; 3.81		
SER77	7.55	4.39	3.80; 3.71	
ALA80	n.d.	n.d.	n.d.	
PRO81	n.d.	n.d.	n.d.	
Gly82	n.d.	n.d.		

Table S4. Selected distance restraints derived from 2D

Atom 1			Atom 2			Restraint (Å)
34	THR	HA	40	HIS	HE1	6.04
50	ARG	CG	40	HIS	HD2	6.50
32	CYS	Н	40	HIS	HE1	5.50
40	HIS	HD2	50	ARG	Н	5.40
32	CYS	HA	40	HIS	HE1	5.05
39	GLU	HG3	40	HIS	Н	4.80
32	CYS	CB	40	HIS	HD2	5.75
46	CYS	HB2	48	CYS	Н	4.65
31	GLU	Н	32	CYS	Н	4.60
40	HIS	HD2	46	CYS	Н	4.30
46	CYS	Н	40	HIS	HD2	4.25
41	CYS	Н	40	HIS	HD2	4.20
39	GLU	HB3	40	HIS	Н	4.10
46	CYS	HB3	33	THR	Н	4.04
48	CYS	HA	49	GLY	Н	3.80
40	HIS	HA	40	HIS	Н	3.80
46	CYS	HB2	33	THR	Н	3.70
46	CYS	HB3	48	CYS	Н	3.70
45	PRO	HB2	46	CYS	Н	3.65
47	ALA	CB	48	CYS	Н	4.60
39	GLU	HG2	40	HIS	Н	3.55
40	HIS	HB3	40	HIS	HD2	3.45
40	HIS	HB2	40	HIS	Н	3.40
32	CYS	HA	32	CYS	Н	3.40
39	GLU	HB2	40	HIS	Н	3.30
34	THR	CG2	40	HIS	HE1	4.30
46	CYS	HA	46	CYS	Н	3.05
48	CYS	HA	48	CYS	Н	3.05
50	ARG	HB3	40	HIS	HD2	3.05
46	CYS	HB2	46	CYS	Н	3.00
32	CYS	CB	33	THR	Н	4.00
46	CYS	HB2	40	HIS	HD2	2.85
46	CYS	HB3	46	CYS	Н	2.80
31	GLU	HB2	32	CYS	Н	2.65
46	CYS	HA	47	ALA	Н	2.60
32	CYS	CB	40	HIS	HE1	3.55
39	GLU	HA	40	HIS	Н	2.50
46	CYS	HB3	40	HIS	HD2	2.45
31	GLU	HA	32	CYS	Н	2.17
32	CYS	HA	33	THR	Н	2.16
45	PRO	HA	46	CYS	Н	2.12
40	HIS	HB2	40	HIS	HD2	1.88

NOESY spectrum (120 ms mixing time) of Zn-H32C.

Supplementary Figure S1. Fingerprint regions of 2D TOCSY spectra of Znbound H32A and H40A mutants.

Supplementary Figure S2. 1D 1 H spectra (fingerprint region) of Cd-bound Histo-Ala mutants, in comparison with the spectrum for Cd-bound wild-type E_C.

Supplementary Figure S3. Deconvoluted ESI-Mass spectra of His-to-Cys mutants expressed in the presence of Zn^{2+} . The spectrum for H32C is dominated by M₆ species, whereas the increased presence of undermetallated species is evident from the spectrum for H40C. The presence of small amounts of Cd²⁺ is due to sample contamination, but does not affect conclusions drawn.

Supplementary Figure 4. Fingerprint region of 1D ¹H NMR spectra for Cdbound His-to-Cys mutants.