
Supplementary Material (ESI) for Molecular BioSystems 
This journal is (c) The Royal Society of Chemistry, 2010 

 1

STRUCTURE OF THE EGF RECEPTOR TRANSACTIVATION CIRCUIT 

INTEGRATES MULTIPLE SIGNALS WITH CELL CONTEXT  

 

Elizabeth J. Joslin1, Harish Shankaran2, Lee K. Opresko2, Nikki Bollinger2,  

Douglas A. Lauffenburger1, and H. Steven Wiley2,3  

 

1Department of Biological Engineering, Massachusetts Institute of Technology, 

Cambridge, MA, 02139. 2Systems Biology Program and 3Environmental Molecular 

Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 9354. 

  

SUPPLEMENTAL MATERIAL 

 
 

Contents: 
 
Supplemental Figures 2-8 
Supplemental Methods 9-18 
Supplemental Tables 19-21 



Supplementary Material (ESI) for Molecular BioSystems 
This journal is (c) The Royal Society of Chemistry, 2010 

 2

 
 
 
Supplementary Figure S1.  The ability of different agonists to stimulate TCT-NA shedding 
is the same as observed for autocrine amphiregulin 
(A) HMEC were plated at a density of 320,000 cells per well in 6-well dishes. After 48hrs, cells 
were switched to serum-free medium (control) or medium including 225 mAb (10μg/ml), IGF1 
(3nM), PMA (1μM), HGF (20ng/ml), UTP (100μM), LPA (5μM), EGF (10ng/ml), TGFa (10ng/ml), 
EPR (20ng/ml) or HB-EGF (40ng/ml). After 2 hr, the medium was collected and the 
concentration of amphiregulin was determined by ELISA. 
(B) Identical to panel A, except that cells expressing TCT-NA were used instead and the ELISA 
was specific for EGF. AR (100ng/ml) was substituted for EGF in the panel of stimulants. 
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Supplementary Figure S2.  Stimulated shedding of TCT-NA is weakly dependent on p38 
After 16 hours in serum-free media, TCT cells were pre-incubated either with (closed symbols) 
or without (open symbols) 10 μM SB203580 for 30 minutes.  At t=0 cells were switched to fresh 
serum-free media alone (circles) or media containing 20 ng/ml TGF  (squares) both with and 
without 10 μM SB203580. Media was collected at indicated intervals and EGF concentrations 
were measured by ELISA.  Error bars are SD from triplicate wells.  
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Supplementary Figure S3.  Effect of PI3K inhibition on 
both TGF  and LPA-stimulated shedding and ERK 
phosphorylation 
(A) Cells expressing TCT-NA (700K per well) were 
changed to serum-free medium overnight before a 1 hour 
treatment with in the indicated concentration of LY294002. 
LPA (0.5 μM) or TGF  (2.5 ng/ml) was added in a small 
aliquot (20μL) and the cells incubated for an additional hour 
prior to collecting the medium and measuring the level of 
immunoreactive EGF by ELISA. The data is the average of 
duplicate wells. 
(B) Same as panel A, but using HMEC at 500K per well. At 
15 min following agonist treatment, cells were rinsed in ice-
cold saline and lysed in detergent as described in Methods. 
The levels of phospho-ERK were then measured by ELISA. 
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Supplementary Figure S4.  The relationship between HGF and TGF  concentrations and 
the levels activated Ras and phospho-ERK 
Cells were plated at a density of ~6 x 106 cells in 150 cm dishes, grown for 48hr and then 
changed to serum-free medium overnight.  Half of the cells were treated with 10μg/ml 225 mAb 
for 1 hour and then treated with the indicated concentrations of HGF (closed circles). The other 
cells were treated with the indicated concentrations of TGF  (open squares).  After 5 min, all 
cells were rinsed and lysed with detergent using the protocol for the Ras assay as outlined in 
the Methods.  The cell lysates were used for both determining the levels of Ras and phospho-
ERK as outlined in the Methods. 
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Supplementary Figure S5.  Unit step response of transfer function types used in the 
mathematical model 

The transfer function forms and the module(s) that they are used for are as follows: (A) G(s) = 
Ks/(τ1s+1) – module 1, (B) G(s) =Ke− td s– module 2, C) G(s) = K/(τ1s+1) (τ2s+1) – module 3 D) 
G(s) = Ks/(τ1s+1) (τ2s+1) – modules 4 and 5. Results are shown for the following parameter 
values: K = 1, τ1 = 5, τ2 = 20, td = 15 mins.  
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Supplementary Figure S6.  Model fits to the experimental data.  
Model fits (lines) to experimental data (markers) are shown for pERK (panel A) and ligand shedding 
(panel B) time courses in response to fixed concentrations of LPA, TGF  and HGF; the pERK response 
to varying doses of LPA (panel C), TGF  (panel D) and HGF (panel E); and the ligand shedding response 
to varying doses of LPA (panel F) and HGF (panel G). The conditions under which the experiments were 
done are described in the corresponding figures in the main manuscript. The marker shapes that are 
used are the same as those in Fig. 2A and 2C of the manuscript: LPA addition experiments are denoted 
by filled squares, HGF addition by open squares and TGF  addition by open triangles. Model fits for 
these respective input conditions are denoted using solid lines, dashed lines and dash-dot lines. The R2 
values for the 11 different curves are as follows: Panel A − L-E:  0.813, T-E: 0.917, H-E: 0.909; Panel B − 
L-S: 0.983, T-S: 0.941, H-S: 0.947; Panel C − L-E: 0.951; Panel D − T-E: 0.908; Panel E − H-E: 0.984; 
Panel F − L-S: 0.874, Panel G − H-S: 0.474. Here, the curve corresponding to each R2 value is identified 
by specifying the input, I (L=LPA, T=TGF, H=HGF) and output, O (E=ERK and S=Shed ligand) in the 
form I-O. 
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Supplementary Figure S7.  Model predictions for system steady-state using alternate solution 
sets obtained during parameter estimation.  
For each parameter set, steady-state pERK levels were computed for the autocrine feedback loop, and 
are plotted as function of the fold change of K2 from its actual value in the parameter set. K2 is the gain of 
the ERK-induced shedding module. The stable steady state is depicted using a solid black line. The red 
line indicates the unstable steady state at pERK = 0. Results are shown for the 10 best parameter 
estimates determined based on the root-mean-squared deviation between model predictions and 
experimental data. As seen, predictions using the various parameter estimates are in excellent 
agreement with each other. Thus, despite the uncertainty in the absolute values of certain parameters 
(Table S3), our results regarding the behavior of the autocrine system (Fig. 8 of the manuscript) would 
remain essentially unchanged. 
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SUPPLEMENTARY METHODS: COMPUTATIONAL MODELING OF EGFR 

TRANSACTIVATION DYNAMICS 

Mathematical model description and assumptions 

Module-based approaches where a biological network is partitioned into functional modules at a 

coarse-grained level are being increasingly applied to understand biological systems 1-4.  For 

system-level analysis of a modular network, each module can be treated as a proverbial ‘black 

box’ whose internal mechanisms do not have to be explicitly represented or even known.  

Molecular interactions within a module are only important with respect to their effect on how the 

module converts an input to an output; they can otherwise be ignored in analyzing the system 

properties.  A modular network model is thus a natural choice for the EGFR transactivation 

circuit where details of the molecular mechanisms are unknown, but the coarse-grained modular 

structure of the network has been established.  

 We developed a block diagram representation for the transactivation system based on 

the network structure deduced in the manuscript (Fig 7).  We defined the system as containing 

five distinct Linear Time-Invariant (LTI) modules (modules 1-5 in Fig. 7) that are involved in 

converting the three inputs (LPA, TGFα and HGF concentration time-series) to the levels of 

ligand shedding rate and ERK activation. The input-output dynamics of these modules are 

described using transfer functions (TFs). There are two distinct classes of processes in this 

system − ligand shedding and ERK activation.  We chose two distinct ligand shedding modules: 

i) an LPA induced shedding module with input being the LPA concentration profile, ii) an ERK 

induced shedding module with input being the level of phosphorylated ERK.  The outputs of 

each of these modules is a shedding rate and the overall ligand shedding rate, is the sum of 

these outputs.  We chose three distinct ERK activation modules: i) an autocrine ligand induced 

ERK module with input being the ligand shedding rate, ii) a TGFα induced shedding module 

with input being the TGFα concentration profile, iii) a HGF induced shedding module with input 

being the HGF concentration profile. The output of each of these modules is the level of 

phosphorylated ERK (pERK), and the overall pERK level is the sum of these outputs. In order to 

make the model realistic, we assumed that the net ligand shedding rate and ERK activity are 

each saturable. We filtered the additive outputs of the LTI ligand shedding modules, and ERK 

activation modules using static (memoryless) sigmoidal functions (modules 6 and 7 respectively 

in Fig. 7). Thus, saturation of the ligand shedding rate and ERK activation are assumed to be 

inherent properties of these processes themselves, and are considered to be independent of the 

type of stimuli that activate these processes. Finally, we integrated the filtered ligand shedding 
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rate to obtain the absolute shed amount at any given time. All of the model variables are treated 

as deviations in the output levels from their respective values in the control experiment. 

 Core modules 2 and 3 together describe an autocrine positive feedback loop, and the 

system inputs feed into this loop by contributing independently to either ligand shedding (LPA) 

or ERK activation (TGFα and HGF).  Our objective is to deduce the input-output relationships of 

the system modules from the closed loop system responses measured in our experiments. 

Information about the input-output behavior of the LTI modules is available from the dynamics 

experiments where LPA, TGFα and HGF are each used as the system inputs (Figs. 2A and 2C), 

while information about shedding and p-ERK saturation is available from dose response 

experiments using LPA, TGFα and HGF individually (Figs. 4A, 4B, 6C and 6D). Our approach is 

to simultaneously fit the model to all of the data from these experiments to determine the model 

parameters.  The implicit assumption here is that the dynamics and saturation properties of the 

feedback loop itself remain unchanged under these different input conditions.   

 Another assumption in our analysis is that the five ERK activation and ligand shedding 

modules are treated as LTI systems. The assumption of linearity for modules 2 and 3 are 

supported by our experimental observations. Although LPA-induced shedding, TGF -induced 

pERK, and HGF-induced pERK have large linear regimes, they are nonlinear for high values of 

the input strength (see the dose response data). We account for these nonlinearities by 

modeling ligand shedding and ERK activation as saturable processes. However, since we only 

have time course measurements at a single ligand dose for each of the stimuli, we make the 

simplifying assumption that the shape of the time course does not change with input strength for 

modules 1, 4 and 5. The assumption of linearity does not restrict our ability to capture the 

dynamics experiments in Fig. 2 since linear systems are capable of generating a wide variety of 

input-output dynamics through the combination of multiple exponential functions in the time 

domain.  Mathematical functions derived from linear dynamic systems would be sufficiently 

complex to capture the input-output time course relationships seen in this system.  

The inputs to the model are the time-dependent concentrations of LPA, TGF  and HGF. 

The outputs are the time dependent levels of pERK, y7(t) and shed ligand, y8(t) (Fig. 6) . We 

assume that the inputs are step functions, i.e. the ligand concentration increases to the 

specified dose at time 0, and stays at this value. Given the input doses of LPA, TGF  and HGF, 

the model predicts the time courses of ERK activation and ligand shedding. The development of 

the mathematical model - our specific choices for the transfer function forms for modules 1-5 – 

and parameter estimation procedures for the entire model are detailed below. 
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Transfer functions for modules 1 to 5, and interpretation of their functional forms 

For a linear system, the output, O(t), in the time domain can be obtained by convoluting its unit 

impulse response, G(t) with the input, I(t).  G(t), is the system output when the input is a single 

sharp pulse at t=0 with an area under the integral of 1.  The input-output relationship can be 

written in the time-domain as:  

( ) ( ) ( )∫ −=
t

dItGtO
0

τττ                     (S1) 

This relationship can be expressed in a more convenient algebraic form by taking the Laplace 

transform of Eq. S1, which yields O(s) = G(s)I(s). G(s) is known as the transfer function (TF) of 

the system.  Note that for a unit impulse input, the Laplace transform of the input I(s) = 1, and 

hence O(s) = G(s); i.e., when the input is a unit impulse, the output is given by G(s). 

 The functional form of G(s) encodes the qualitative characteristics of the system 

response.  For instance when the TF is a constant, i.e. G(s) = K, we have a simple gain system 

with the shape of the output time-series being identical to that of the input.  For G(s) = K/(τs+1), 

the impulse response in the time domain is an instantaneous rise from 0 to a maximum value, 

followed by an exponential decay with rate 1/τ and half-life τ loge2; this is called a first-order 

system.  For G(s) = K/(τ1s+1)(τ2s+1), the impulse response is a rise from zero at t=0 to a 

maximum value in a finite amount of time, followed by a decay to zero; this is a second-order 

system.   The overall response decay time is controlled by the larger of the two time constants, 

τ1 and τ2.  For G(s) = K stde− , the output profile mirrors that of the input after a dead-time of td 

where the output does not change; we refer to this as a system with dead-time.  From a 

practical standpoint, the K in the numerator of the aforementioned TFs is the gain of the system 

and specifies how the system amplifies (attenuates) the input.  The τ values in the denominator 

are time constants, which specify the lag between the input and output, i.e. the sluggishness of 

the response.  The td value in a term of type stde−  in the numerator specifies the dead-time.  

 An ‘s’ term in the numerator of the TF amounts to taking the derivative of the input. In 

our experiments the inputs are step changes in the ligand concentration.  A unit step change 

input has a laplace transform I(s) = 1/s. An ‘s’ term in the numerator of the TF, converts this 

input to an impulse.  For instance, when G(s) = Ks/(τs+1), the output in response to a step input 

is O(s) = G(s)×I(s) = Ks/(τs+1) × 1/s = K/(τs+1).  This output in the time domain would be an 

instantaneous rise from 0 to a maximum value, followed by an exponential decay with rate 1/τ.  
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Note that the output would decay to 0 even though the input remains at a constant non-zero 

value.  Thus, the output ‘adapts’ to the constant presence of a stimulus and returns to its original 

value.  When G(s) = Ks/(τ1s+1)(τ2s+1), we again have an adaptive response, but the output in 

response to a step input would be a rise to a maximum value in a finite amount of time, and 

would eventually decay to zero. 

Transfer function forms chosen for the five system modules 

In conceptual terms, we have a system identification problem where we need to determine the 

transfer function forms for the modules as well as their parameters from the measured input and 

output time-series.  This problem can be posed as a non-linear optimization where the error 

between the model predictions for the output time-series and the experimental output time-

series is minimized by adjusting the model functions and parameters.  Although this is 

conceptually simple, non-linear optimization has pitfalls.  Inclusion of too many parameters can 

result in multiple optima, make parameter estimation unreliable, and complicate the 

interpretation of the results.  Thus, automatically identifying a form for the module transfer 

functions as part of the optimization would complicate the data analysis.  As an alternative, we 

chose to specify the simplest possible transfer function forms for each of the modules based on 

the qualitative dynamic features of the EGFR transactivation circuit.  The optimization problem 

is then reduced to the task of determining the TF parameters alone.  The TF forms chosen for 

the five system modules and the rationale for their selection are provided in Table S2.  The step 

response encoded by these TF forms is shown in Fig. S5. 

Governing equations for the mathematical model 

Transfer functions are a concise way to represent the solution of linear ordinary differential 

equations (ODEs). Each of the five LTI modules can be described by a particular ODE which 

when solved yields its transfer function. Note that a first-order system (module 1) is described 

by a first order ODE, a second order system (modules 3, 4 and 5) by second order ODEs and a 

system with just a dead time (module 2) is described by an algebraic equation in the time 

domain. Since our overall model is nonlinear, it is more convenient to express its governing 

equations in the time domain rather than in the form of transfer functions in the Laplace domain. 

Let yi(t) be the output of module i in Figure 7 at time t. Then, for step changes in the LPA, TGF 

and HGF concentrations to values L, T and H respectively, the change in the system variables 

yi(t) over time are described by the following ODEs: 

τ1dy1/dt  + y1 = 0       (Module 1) 
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τ2τ3 d
2y3/dt2 + (τ2 + τ3) dy3/dt + y3 = K3 y6(t)   (Module 3) 

τ2τ3 d
2y4/dt2 + (τ2 + τ3) dy4/dt + y4 = 0    (Module 4) 

τ2τ3 d
2y5/dt2 + (τ2 + τ3) dy5/dt + y5 = 0    (Module 5)       

 dy8/dt  = y6(t)            (Module 8)       (S2) 

For modules 3-5, which are described by second order ODEs, we need to specify two initial 

conditions, one for the variable itself, and another for the derivative of the variable. The initial 

conditions for the ODE system are as follows: y1(0) = K1L/τ1 ; dy4/dt(0) = K4T/(τ2τ3)  ; dy5/dt(0) = 

K5H/(τ2τ3);  y3(0) = dy3/dt (0) = y4(0) = y5(0) = 0; y8(0) = LIG(0), the ligand amount measured at 

time 0 for the control case in Figure 2C. 

The above differential equations need to be solved in conjunction with the following algebraic 

equations: 

y2(t) = K2 y7(t − td)                 (Module 2) 

y6(t) = K6 [y1(t) + y2(t)] / {KS6 + [y1(t) + y2(t)]}    (Module 6) 

y7(t) =  K7 [y3(t) + y4(t) + y5(t)] / {KS7 + [y3(t) + y4(t) + y5(t)]}  (Module 7)                  (S3) 

Note that in Eq. S2 the input ligand concentrations appear as initial conditions and not in the 

equations themselves. This is due to the fact that modules 1, 2 and 3 contain an “s” term in the 

numerator, which converts the step input to an impulse. For any given set of input strengths, 

and parameter values, we solved equations S2 and S3 in MATLAB (Mathworks, Natick, MA) 

using the delay-differential equation solver dde23 to obtain the outputs that we are interested in: 

the level of ERK activation, y7(t), and the amount of shed ligand, y8(t).  

Parameter estimation  

The mathematical model for the transactivation system contains 13 unknown parameters. There 

are the 9 transfer function parameters for the core LTI modules: K1 [units: (pg ×10-2 /min) / (μM 

LPA)] , τ1 [units: min], K2 [units: (pg ×10-2 /min) / (ng/ml pERK)] , td [units: min], K3 [units: (ng/ml 

pERK)/ (pg ×10-2 /min)],  τ2 [units: min], τ3 [units: min], K4 [units: (ng/ml pERK)/ (ng/ml TGF )] and 

K5 [units: (ng/ml pERK)/ (ng/ml HGF)]. In addition to these, we have a total of 4 parameters in 

the sigmoidal saturation functions for ligand shedding rate and ERK activation: K6 [units: (pg 

×10-2 /min)], KS6 [units: (pg ×10-2 /min)], K7 [units: (ng/ml)] and KS7 [units: (ng/ml)]. Given the 

values for this entire parameter vector θ, and the input concentrations L (μM), T (ng/ml) and H 

(ng/ml) we can compute the system response using the equations and initial conditions 
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presented above. For any given input condition we computed the ERK output at time t, as y7(t); 

and the shed ligand amount at time t, as y8(t) + LIGcontrol(t). LIGcontrol(t) is the constitutive ligand 

shedding and was computed by interpolating the data points shown in the control case 

experiment in Fig. 2A.  

 The experimental data consists of time course measurements for ERK and shedding at 

fixed ligand doses, and dose response measurements at fixed times. Say for a particular input-

output combination (e.g. input = LPA, output = pERK), the time course is measured at a ligand 

dose De and the dose response is measured at a time point te. In order to simultaneously fit the 

time course and dose response data, we scaled the dose response curve so that the dose 

response value at time te would equal the value determined in the time course experiment for 

D=De and t=te. In essence, we assume that the shape of the dose response curve is invariant 

while the values themselves could depend on the cell culture conditions. This is supported by 

the data shown in Fig. S4. We generated model predictions for pERK and shed ligand at the 

appropriate dose and time point values dictated by our experimental measurements. We then 

computed a weighted residual vector [(Ymodel – Yexp )/ Max(Yexp)] for each of the experimentally 

measured dose response and time course curves. This weighting ensures that all of the curves 

make comparable contributions to the overall residual during parameter estimation. We then 

constructed the overall weighted residual vector by combining the residuals for all the 

experiment curves. This residual vector, Res(θ), is a function of the model parameters, θ, and 

was minimized using the MATLAB nonlinear least squares regression function lsqnonlin to 

obtain estimates for the model parameters. We defined search ranges for each of the 

parameters (Table S3) and performed 100 optimization iterations starting from random positions 

within the chosen parameter bounds. The root-mean-squared value of the residual vector 

(RMSD) was determined for each of these solutions. Parameter sets that yielded an RMSD 

within 1% of the minimum value were analyzed to determine the uncertainty in the individual 

parameters (Table S3). We computed the mean, standard deviation, CV, and the 10th, 50th and 

90th percentile values for each of the 13 model parameters using all qualifying solutions (Table 

S3).The best-fit parameter set that resulted in the lowest RMSD was used to obtain the results 

in Figs. 7 and 8 of the manuscript. Despite the uncertainties in some of the parameters, our 

predictions for the overall behavior of the transactivation circuit remain unchanged when we use 

any of the parameter sets that yield a good match between model and experiment (Fig. S7). 
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Model fits to the experimental data using the best fit parameter set are shown in Fig. S6.  

Although the model does not perfectly capture each individual time-series or dose response 

curve, the overall fit is reasonable given the fact that we are simultaneously fitting data from 11 

individual experiments using a relatively small set of parameters. The R2 values (Fig. S6) are 

acceptable for all of the curves except for the HGF-induced shedding dose response where R2 = 

0.47. This is likely due to using the closed-loop response to three distinct inputs to obtain the 

parameters for the common positive feedback loop. Our ability to obtain a reasonable fit to the 

data suggests that the model is internally self-consistent and that each of the three stimuli for 

the most part activate an invariant feedback loop. The discrepancies in the fit could reflect 

subtle differences in the manner in which the three inputs engage the autocrine circuit.  

Steady-states and system stability 

Once, we obtained the parameters of the mathematical model, we performed a steady-state 

stability analysis to examine the properties of the autocrine feedback loop. Equations S2 and S3 

can be used to determine the steady-state level of pERK in the system in response to a 

perturbation. In our model, the ligand shedding response to LPA, and the ERK activation 

response to TGF  and HGF are each modeled as transients that decay to zero at long enough 

times (see Table S2). In this scenario, modules 1, 4 and 5 can be ignored in determining the 

steady-state. Setting the derivatives in the governing equation for module 3 to equal zero and 

combining the resultant algebraic equation (y3

SS = K3y6

SS) with the expressions in Eq. S2, yields 

the following nonlinear differential equation for the system: 

( ) ( )
2

3 3 2 3 6 7 3
2 3 2 3 32

6 7 2 7 6 3

τ τ τ τ+ + + =
+ +S S S

d y dy K K K K yy
dt dt K K K K K y

         (S4) 

Setting the derivatives to equal 0 in Eq. S4, allows us to calculate the steady-state values for y3, 

which can then be used to compute the steady-state levels for all the other system variables. 

We find that there are two possible steady-states for y7 the readout for ERK activation: one at 

y7

SS = 0, and the second given by the following expression:  

 y7

SS = (K2K3K6K7 – KS6KS7)/(K2K3K6 + K2KS7)         (S5) 

For K2K3K6K7 < KS6KS7, we have a single steady-state at y7

SS = 0. For K2K3K6K7 > KS6KS7, in addition 

to the 0 steady-state, the non-zero steady-state given by Eq. S5 would be positive and hence 

viable. The actual basal state of the system would depend upon the stability of each of these 

steady-states. 
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 To determine the stability around a steady-state value, we can examine how the 

linearized version of the model behaves in the vicinity of the steady-state. Linearizing the term in 

the right hand side of Eq. S3 converts it to a linear ordinary differential equation, which can be 

used to compute a transfer function. This transfer function describes how the system responds 

to small perturbations, when it starts from the specified steady-state. For stability, the roots of 

the terms in the denominator of the transfer function should have negative real parts. Using this 

requirement, we can show that the steady state at y3 = 0 (and y7 = 0) is only stable if K2K3K6K7 < 

KS6KS7. Further, the steady-state given by Eq. S5 is only stable if K2K3K6K7 > KS6KS7. These results 

were used to generate Fig. 8A of the manuscript. 

The steady-state analysis indicates that if the feedback in the system is sufficiently 

strong, the system would prefer the nonzero steady state, and would thus be in a pre-activated 

basal state prior to ligand addition. For the dynamic simulations shown in Figs. 8B and 8D of the 

manuscript we used the specified value of K2, and fixed values for the other system parameters, 

to compute the system steady-state as described above. This steady-state was used as the 

initial condition for computing the pERK dynamic response to TGF . 

 Note that irrespective of the strength of the feedback loop, the autocrine feedback loop 

has a stable steady-state. Thus, a transient perturbation would result in a transient response 

that returns to the original steady state value. This is a consequence of the negative 

mechanisms that turn off ERK signaling. This feature is implicitly encoded in our mathematical 

model in the form of the assumption that an impulse in the ligand shedding rate (a step change 

in ligand concentration), would result in a transient pERK response. For low, physiological 

ligand concentrations, this shut off could be due to the removal of the ligand from the 

extracellular medium via induced receptor trafficking, which results in signal shut off. Further, 

there are several negative feedback mechanisms that are known to directly modulate the ERK 

signaling cascade, and these could be responsible for the adaptation in ERK activity in the face 

of the continued presence of ligand even at high ligand dosages.   

 Here, we use sigmoidal saturation functions to account for the fact that ERK and 

shedding are saturable processes. This renders the model more realistic and enables us to 

generate predictions for inputs and feedback strengths that the model is not explicitly trained on. 

To examine the role of this nonlinear saturation on the steady-state behavior of the system, we 

analyzed what would happen without such saturation effects. Exclusion of sigmoidal saturation 

would still enable us to fit the time course data sets shown in Figs. 2A and 2C. Let us say K2 and 

K3 are the gains for modules 2 and 3 determined by fitting a linear model (same as Fig. 7, but 
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with modules 6 and 7 eliminated) to the time course data. It can be shown that such a model 

has a single steady-state value at y3 = 0 irrespective of the strength of the feedback loop. This 

steady-state would be stable for K2K3 < 1, and the system would show a transient pERK 

response to perturbations under these conditions. However for K2K3 > 1, the steady-state at y3 = 

0 would become unstable, and since there is no other stable steady-state, the system would 

end up yielding maximal values for ERK activation. Such a system would switch to maximal 

ERK activation as we increase the strength of the feedback loop. Inclusion of nonlinear 

saturation effects results in a second nonzero steady-state for K2K3K6K7 > KS6KS7. This steady-

state (Eq. S5) is a function of the strength of the feedback loop. Thus nonlinear saturation of 

ERK and shedding results in an ability to tune the basal state of the system in a graded fashion 

as a function of the strength of the feedback loop (see Fig. 8A).  

 So far in our analysis we have assumed that TGF  and HGF are transient activators of 

ERK signaling. These transients are captured by modules 4 and 5 in the model respectively. If 

in addition, to the transient response, TGF  and HGF were to generate sustained contributions 

to ERK activity at the levels y4

SS and y5

SS respectively, then the overall steady-state pERK level, 

y7

SS in the presence of feedback is given by the solution to the quadratic equation Ay7

2 + By7 + C 

= 0, where A = K2K3K6 + K2(KS7 + y4

SS + y5

SS); B = KS6(KS7 + y4

SS + y5

SS) − K2K3K6K7 − K2K7(y4

SS + y5

SS); 

C = − K7KS6(y4

SS + y5

SS). For Fig. 8D in the manuscript, we independently varied y4

SS and y5

SS and 

determined the steady-state pERK level, y7

SS in the presence of feedback by solving the above 

quadratic equation. For all the cases examined a single viable solution was obtained. In the 

absence of feedback the expected pERK level at steady-state would simply be y7

SS = y4

SS + y5

SS 

as long as we are below saturation levels for ERK activation.  
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SUPPLEMENTARY TABLE S1 

 

Table S1 
 Effect of an Inhibitor Panel on ERK phosphorylation 

  Dose Stimulant 
Inhibitor Target (μM) LPA EGF HGF 

PD-153035 EGFR 1.0 +++ +++ - 
KN-62 CaMKII 1.0 + - ++ 
KN-93 CaMKII 0.4 + - - 
BAY 11-7082 IKK 20 ++ + - 
AG-490 JAK2 0.1 - - + 
SP 600125 JNK 8.0 + - - 
PD-98059 MEK 50 +++ +++ +++ 
U-0126 MEK 10 +++ +++ +++ 
AG-879 NGFR 10 - - - 
SB-203580 P38-MAPK 0.03 - + - 
SB-202190 P38-MAPK 0.05 - - - 
LY 294002 PI3K 10 ++ - ++ 
Wortmannin PI3K 0.05 ++ + ++ 
H-89 PKA 0.05 - - - 
Hypericin PKC 2.8 - + + 
Palmitoyl-DL-
carnitine Cl 

PKC 0.01 - - - 

PP2 SRC 10 ++ - - 
Shown is the degree of inhibition of phospho-ERK levels that was observed following 
30 min treatment with the indicated concentration of inhibitors and 10 min stimulation 
with the indicated agonists. Results are average of duplicate experiments. Phospho-
ERK levels were measured using a Luminex assay as described in Methods. “-“ 
indicates no inhibition, “+” indicates ~25% inhibition, “++” indicates ~50% inhibition and 
“+++” indicates ~100% inhibition. LPA was used at 20μM, EGF at 10ng/ml and HGF at 
20ng/ml. 
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Supplementary Table S2. Chosen TF forms and the rationale for their selection* 

Module TF form Rationale 

Ligand shedding modules: 

Module 1: 

LPA induced shedding 
( ) ( )11

1
1 +

=
s

sK
sG

τ
 

Input is a step change in LPA, and 
the ligand shedding rate after a 
transient increase decays with time 
(Fig. 2C). We don’t have strong 
evidence suggesting the presence 
of a finite response rise time.   

Module 2: 

ERK induced shedding 
( ) stdeKsG −= 22  

TGFα and HGF induce immediate 
ERK activation (Fig. 2A), but the 
ligand shedding shows the 
presence of a dead-time. No 
evidence for a decaying response. 

ERK activation modules: 

Module 3: 

Autocrine ligand induced 
ERK 

( ) ( )( )11 32

3
3 ++

=
ss

K
sG

ττ
 

Module 4: 

TGFα induced ERK 
( ) ( )( )11 32

4
4 ++

=
ss

sK
sG

ττ

Module 5: 

HGF induced ERK 
( ) ( )( )11 32

5
5 ++

=
ss

sK
sG

ττ

Step changes in TGFα and HGF 
induce transient ERK activation with 
a finite rise time (Fig. 2A). G4 and G5 
were chosen based on this 
information. ERK activation was 
assumed to occur with similar 
dynamics irrespective of the 
stimulus (TGFα, HGF, autocrine 
ligand). Hence, the characteristic 
response times (τ) were assumed to 
be the same for G3, G4 and G5. The 
input to module 3 is a shedding rate, 
which is already a derivative of the 
ligand concentration. Hence the ‘s’ 
term was dropped from the 
numerator of G3.  

 

The TF forms chosen were the simplest possible ones that could explain the qualitative 
dynamic features of the EGFR transactivation circuit (Fig. 2 in the manuscript). The 
responses of these TF forms to unit step inputs are presented in Fig. S5.  
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Supplementary Table S3. Parameter estimates and uncertainty in individual parameters 

  Search Range     Percentiles 

Module Parameter Min Max Best Fit Mean SD CV 10th 50th 90th 

K1 (pg×10-2 /min)/(μM LPA) 0.1 100 22.8156 23.4069 6.5749 0.2809 12.9214 23.6821 31.6184 
LPA-induced shedding 

τ1 (min) 1 25 1.5834 1.5255 0.108 0.0708 1.3898 1.5234 1.6287 

           

K2 (pg×10-2 /min)/(ng/ml pERK) 0.01 10 0.0533 0.0571 0.0159 0.278 0.0294 0.0617 0.0704 
ERK-induced shedding 

td (min) 10 30 23.2909 22.6124 0.4696 0.0208 21.9557 22.5914 23.3185 

           

K3 (ng/ml pERK)/(pg×10-2 /min) 0.1 100 5.0012 7.2413 2.1684 0.2994 4.4309 7.9752 9.5871 

τ2 (min) 0.1 10 0.5017 0.8337 0.3099 0.3717 0.4432 0.7568 1.3043 Autocrine ligand-
induced ERK 

τ3 (min) 5 50 9.3723 9.191 0.3266 0.0355 8.8521 9.239 9.4596 

           

TGF -induced ERK K4 (ng/ml pERK)/(ng/ml TGF ) 0.1 100 28.4561 39.0561 11.6612 0.2986 23.3459 39.5387 52.2767 

           

HGF-induced ERK K5 (ng/ml pERK)/(ng/ml HGF) 0.1 100 11.5128 15.4065 4.4211 0.287 9.2853 16.6236 20.5814 

           

K6 (pg×10-2 /min) 0.01 100 0.1809 0.1868 0.0112 0.0602 0.1764 0.1855 0.2031 
Shedding saturation 

KS6/K6 (dimensionless) 0.001 1 0.6699 0.729 0.2022 0.2774 0.3722 0.7692 0.8946 

           

K7 (pg×10-2 /min) 0.1 100 0.9766 0.9796 0.0028 0.0028 0.9763 0.9794 0.9835 
pERK saturation 

KS7/K7 (dimensionless) 0.001 1 0.4066 0.5752 0.1721 0.2992 0.352 0.6159 0.7642 

Parameters were estimated by fitting the model to the experimental data. Bounds were placed on the individual parameters as indicated in the 
“Search range” columns above. The optimization was run 100 times with initial values randomly chosen within the indicated parameter bounds. 
The best fit column shows the parameter set that yielded the minimum root-mean-squared deviation (RMSD) between model and experiment. 
Solutions that had an RMSD value within 1% of the best fit RMSD were used to compute parameter statistics - mean, standard deviation (SD), 
coefficient of variation (CV), and the 10th, 50th and 90th percentiles. The variability in any given parameter reflects the inability of the model to 
obtain a unique estimate for its value. Parameters with CV > 0.1 are highlighted in red. Of these, the parameters K1 and K2 and KS6 form a 
mutually correlated set, which together determine the magnitude of ligand shedding. Similarly the parameters K3, K4, K5 and KS7 comprise a 
correlated set, which together determine the magnitude of ERK activation. These correlations contribute to the uncertainties in these parameters. 
The uncertainty in τ2 is due to the lack of sufficient data to accurately estimate the rise time for ERK activation. 


