Supplemental Information

Materials

E. coli $\mathrm{DH} 5 \alpha$ was obtained from the University of Illinois at Urbana-Champaign Biochemistry Department's Media Preparation Facility (Urbana, IL). Hypericum perforatum var. Topas seeds were purchased from Sand Mountain Herbs (Fyffe, AL). Eucalyptus robusta and Eucalyptus camaldulensis var. Silverton Province plants were obtained from Windmill Outback Nursery (Louisa, VA). Plasmid $\mathrm{pET} 26 \mathrm{~b}(+)$ was obtained from Novagen (Madison, WI). All restriction endonucleases, as well as T4 DNA ligase and antarctic phosphatase, were purchased from New England Biolabs (Beverly, MA). The QIAprep Spin Plasmid Mini-prep Kit, QIAquick PCR Purification Kit, QIAquick Gel Extraction Kit, and RNeasy MiniElute Cleanup Kit were purchased from Qiagen (Valencia, CA). The Total RNA Isolation Mini Kit was obtained from Agilent Technologies (Santa Clara, CA). All primers were synthesized by Integrated DNA Technologies (Coralville, IA). 5 PRIME MasterMix was purchased from 5 PRIME Inc. (Gaithersburg, MD). Unless otherwise noted, all other reagents were purchased from Sigma-Aldrich (St. Louis, MO).

Degenerate Primer Design

The mRNA sequences of fourteen enzymes in the plant Type III PKS family were used as the templates to design degenerate primers: Hypericum androsoemum benzophenone synthase (BPS), Hordeum vulgare homoeriodictyol/eriodictyol synthase (HEDS), Medicago sativa chalcone synthase 2 (CHS2), Arachis hypogea stilbene synthase (STS), Pinus sylvestris stilbene synthase (STS), Gerbera hybrida 2-pyrone synthase (2-PS), Aloe arborescens octaketide synthase (OKS), Aloe arborescens pentaketide chromone synthase (PCS), Rheum palmatum aloesone synthase (ALS), Rheum palmatum benzalacetone synthase (BAS), Humulus lupulus isovalerophenone synthase (VPS), Hydrangea macrophylla stilbenecarboxylate synthase 1 (STCS1), Hydrangea macrophylla coumaroyl triacetic acid lactone synthase (CTAS), and Huperzia serrata acridone synthase (ACS). The phylogenetic relationship of these fourteen enzymes and their main polyketide products are shown in Figure S1.

The mRNA sequences of the fourteen above enzymes were aligned using the ClustalW tool in the Biology Workbench suite (http://workbench.sdsc.edu). ${ }^{1}$ Highly similar regions were identified from the alignment, and the six regions chosen to create degenerate primers are mapped onto the M. sativa CHS2 mRNA and protein sequences in Figure S2. The conserved regions were denoted F1, F2, F3, R1, R2, and R3, and used to design primers of the same name (see Figure S3 and Figure S4). To keep degeneracy as low as possible, less conserved bases were replaced with deoxyinosine, with a maximum of three deoxyinosine nucleotides per primer. The primer sequences, their levels of degeneracy, and definitions of mixed bases are given in Table S1. Three sets of primers were designed to perform the nested PCR, which was essential because repeated use of F1-R3 cannot amplify desired fragment and using the inner primer set F3-R1 initially cannot generate enough amounts of the desired fragment either. Restriction sites were added to primers PKS-F3 (NheI) and PKS-R1 (XhoI) to facilitate cloning the smallest fragments into a vector for sequencing; those primers are PKS-F3-F and PKS-R1-F. Primers both with and without flanking bases were generated because it was unclear whether non-hybridizing, flanking nucleotides would inhibit the amplification reaction. Based on the M. sativa CHS2 mRNA (Figure S2), the fragment amplified by PKS-F1 and PKS-R3 is 803 nt in length; the fragment amplified by PKS-F2 and PKS-R2 is 776 nt ; and the fragment amplified by PKS-F3(-F) and PKS-R1(-F) is 407 nt .

Figure S1 Phylogenetic analysis of the fourteen Type III PKS enzymes used to create degenerate primers in this study. The primary products of the enzymes are shown. The enzymes are, in order: HEDS, homoeriodictyol/eriodictyol synthase; ALS, aloesone synthase; BPS, benzophenone synthase; OKS, octaketide synthase; PCS, pentaketide chromone synthaes; STS, stilbene synthase; ACS, acridone synthase; CTAS, coumaroyl triacetic acid synthase; STCS1, stilbenecarboxylate synthase 1; 2-PS, 2-pyrone synthase; VPS, isovalerophenone synthase; CHS2, chalcone synthase 2; BAS, benzalacetone synthase.

Figure S2 Locations of the three sets of conserved regions used to create degenerate primers, mapped onto the M. sativa CHS2 gene and protein, are shown in yellow, green, and pink, corresponding to F1, F2, F3, R1, R2, and R3, respectively. Active site residues Cys-152, His-305, and Asn-338 are shown in red and marked with asterisks. Residues which are known to affect substrate preference and elongation number, Thr-197, Gly-256, and Ser-338, are shown in blue and marked with a triangle.

Figure S3 Genetic diversity, consensus sequence, and primers designed at conserved regions F1, F2, and F3. In PKS-F3, italicized bases are extra flanking bases and the underlined bases are the NheI restriction site.

Figure S4 Genetic diversity, consensus sequence, and primers designed at conserved regions R1, R2, and R3. In PKS-R1-F, italicized bases are extra flanking bases and the underlined bases are the XhoI restriction site.

Table S1 DNA sequence and degeneracy of primers used in this study.

Primer	Sequence, $5^{\prime} \rightarrow$ 3'	Degeneracy
PKS-F1	GCIATIVMDSARTGGGGNC	288
PKS-F2	TCIVRRATIACICAYBTNRT	576
PKS-F3	GYIAARGAYITNGGNGARAACAA	256
PKS-F3-F*	GCGTTCGCTAGCGYIAARGAYITNGGNGARAACAA	256
PKS-R1	ATNSCISKICCICCRGGRTG	128
PKS-R1-F**	GCGTTCCTCGAGATNSCISKICCICCRGGRTG	128
PKS-R2	CCSMWITCIWDNCCITCNCC	768
PKS-R3	TCIAYNGTNADICCIGGNCC	384

${ }^{ \pm}$Mixed bases B: C, G, T; D: A, G, T; H: A, C, T; K: G, T; M: A, C; N: A, C, G, T; R: A, G; S: C, G; V: A, C, G; W: A, T; Y: C, T.
*Additional flanking bases are in italics; the NheI restriction site is underlined.
**Additional flanking bases are in italics; the XhoI restriction site is underlined.

Overview of the PCR-based Method for Discovering New Type III PKS Genes

An overview of the PCR-based method for discovering new Type III PKS genes is shown in Figure $\mathbf{S 5}$. Plant tissue was collected, total RNA extracted, and cDNA prepared as described below. The cDNA library was then used as the template for a nested PCR amplification (primers PKS-F1 and PKS-R3; PKSF2 and PKS-R2; and PKS-F3-F and PKS-R1-F). In parallel, the cDNA library was used as a template for amplification of a $\sim 1000 \mathrm{nt}$ fragment of the gene encoding RuBisCo (Fwd primer 5'
CTTGGCAGCATTCCGAGTAACTCC - 3^{\prime}; Rev primer 5^{\prime} - CGGTCAGA GCAGGCATATGC - 3^{\prime}) as a control for the presence of mRNA. The $\sim 400 \mathrm{nt}$ fragments obtained from the final nested PCR were ligated into $\mathrm{pET} 26 \mathrm{~b}(+)$. The fragments were sequenced using primers specific to the T 7 terminator in $\mathrm{pET} 26 \mathrm{~b}(+)$. Finally, translation of the resulting $\sim 400 \mathrm{nt}$ sequence gave $\mathrm{a} \sim 130$ amino acid sequence of the Type III PKS enzyme.

Figure S5 Overview of the PCR-based method for discovering new Type III PKS genes.

Collection of Plant Tissue

Plant tissue (leaf) was cut from live plants and immediately frozen on liquid nitrogen to prevent degradation of RNA. Frozen tissue was crushed to fine powder using a mortar and pestle cooled to freezing using liquid nitrogen. Crushed plant tissue was stored at $-80^{\circ} \mathrm{C}$ until RNA extraction.

Total RNA Isolation and Concentration and cDNA Synthesis

Total RNA was purified from crushed plant tissue using the Agilent Total RNA Isolation Mini Kit according to the manufacturer's instructions. Approximately 100 mg of plant tissue was used in each RNA purification. To purify and concentrate RNA, the Qiagen RNeasy MinElute Cleanup Kit was used according to the manufacturer's instructions. Total RNA was visualized by agarose gel electrophoresis and concentration and purity were determined using a NanoDrop (Thermo Fisher Scientific, Waltham, MA). Purified, concentrated total RNA was used as the template for cDNA synthesis using Transcriptor II reverse transcriptase enzyme (Invitrogen, Carlsbad, CA) and anchored Oligo- dT_{20} primer (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions.

Screen Validation Using Hypericum perforatum var. Topas

Before germinating, H. perforatum var. Topas seeds were sterilized by a four-step process: (1) seeds were washed in a solution of 70% ethanol and 0.1% Tween 20 with vigorous mixing for 1 minute; (2) seeds were washed in a solution of $5 \% \mathrm{NaOCl}$ (bleach) with vigorous mixing for 10 minutes; (3) seeds were then rinsed with three washes of distilled, deionized water which was sterilized through a $0.22 \mu \mathrm{~m}$ syringe filter; (4) seeds were soaked in a solution of Agribrom antifungal dissolved in sterile distilled, deoinized water and incubated in the dark at $4{ }^{\circ} \mathrm{C}$ for 48 hours. Subsequently the sterilized seeds were rinsed in sterile distilled, deionized water, plated on Murashige-Skoog (no sucrose) plates (Murashige-Skoog basal salts, MES, 0.7% agar, pH 5.7) sealed with gas-permeable tape ($3 \mathrm{M}, \mathrm{St}$. Paul, MN) and incubated in a lighted room to induce germination. After approximately four weeks, seedlings were removed from agar plates and plant tissue was collected and cDNA prepared as described above.

To verify their expression, full-length genes for H. perforatum CHS, BPS, PKS1, and PKS2 were amplified from H. perforatum cDNA using the specific primers shown in Table S2 and 5 PRIME MasterMix according to the manufacturer's instructions (PCR program: $95^{\circ} \mathrm{C}, 3 \mathrm{~min} ;\left[94^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 50\right.$ $\left.{ }^{\circ} \mathrm{C} 1 \mathrm{~min} ; 68^{\circ} \mathrm{C} 1 \mathrm{~min} 30 \mathrm{sec}\right] \times 50 ; 68^{\circ} \mathrm{C}, 7 \mathrm{~min}$). Approximately $2 \mu \mathrm{~g}$ cDNA was used in a $25 \mu \mathrm{~L}$ PCR reaction. PCR products were analyzed by agarose gel electrophoresis and then bands of the appropriate size were purified by gel purification and extraction. DNA sequencing reactions were performed using the same primers initially used to amplify the genes (Table S2) and the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) according to the manufacturer's instructions. DNA was sequenced by the Biotechnology Core DNA Sequencing Laboratory at the University of Illinois at Urbana-Champaign (Urbana, IL). Comparing the sequencing results versus published sequences confirmed that all four PKSs were expressed in the H. perforatum seedlings.

Amplifications with the degenerate primers were performed using the following PCR program: $95^{\circ} \mathrm{C}, 3$ $\min ;\left[94{ }^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 50^{\circ} \mathrm{C} 1 \mathrm{~min} ; 68^{\circ} \mathrm{C} 1 \mathrm{~min} 30 \mathrm{sec}\right] \times 50 ; 68^{\circ} \mathrm{C}, 7 \mathrm{~min}$. DNA fragments were amplified from cDNA using the primers shown in Table S1 and 5 PRIME MasterMix according to the manufacturer's instructions. The RuBisCo gene is highly conserved among plant species. The mRNA sequences of Eucalyptus globulus RuBisCo and Hypericum perforatum RuBisCo are available. These two genes share approximately 90% sequence identity and were used to design the RuBisCo primers used in this work. Specifically, the two mRNAs were aligned using Clustal W and two small, highly conserved regions ($99-100 \%$ identity) were selected for primer annealing. Amplification of the RuBisCo fragment was performed using specific primers (FWD: 5'-CTT GGC AGC ATT CCG AGT AAC TCC-3', REV: 5'-CGG TCA GAG CAG GCA TAT GC-3') for the RuBisCo gene in conjunction with the first
amplification using PKS-F1 and PKS-R3 primers, to verify the amplification was successful and cDNA was present. The primers were also used to amplify the Eucalyptus RuBisCo mRNA and were used as a control in Eucalyptus amplifications. For amplifications using cDNA as the template, $1 \mu 1$ of cDNA was used; alternatively, $5 \mu l$ of PCR product was used as the template for subsequent nested PCR amplifications using primers PKS-F2 and PKS-R2 or PKS-F3-F and PKS-R1-F.

Table S2 Gene-specific primers for H. perforatum Type III PKSs.

Primer	Sequence, $5^{\prime} \rightarrow 3^{\prime}$
CHS-F	ATGGTGACCGTGGAAGAAGTCAG
CHS-R	TTAATATGCGACACTGTGAAGGACCAC
BPS-F	ATGGCCCCGGCGATG
BPS-R	CTGGAGAATTGGGACACTCTGGAG
PKS1-F	ATGTCTAACTTGGAGACCAATGGCTC
PKS1-R	TCATAGGCATAGGCTTCGAAGAAGG
PKS2-F	ATGGGTTCCCTTGACAATGGTTC
PKS2-R	TTAGAGAGGCACACTTCGGAGC

PCR-amplified ~ 400 nt DNA fragments were cloned into the $\mathrm{pET} 26 \mathrm{~b}(+)$ vector to facilitate DNA sequencing. The $\sim 400 \mathrm{nt}$ fragment was digested with NheI and XhoI (10 units enzyme per $\mu \mathrm{g}$ DNA), and the vector was digested with $X b a \mathrm{I}$ and $X h o \mathrm{I}$ (10 units enzyme per $\mu \mathrm{g} \mathrm{DNA}$). Note that $N h e \mathrm{I}$ and $X b a \mathrm{I}$ have compatible cohesive ends. After ligation using T4 DNA ligase the plasmid was transformed into E. coli DH5 α and single colonies were picked. Presence of an insert of the correct size was verified by colony PCR. Briefly, cells were collected from $200 \mu 1$ overnight culture and resuspended in $200 \mu \mathrm{l}$ sterile distilled, deionized water. The samples were boiled for ten minutes, cooled to room temperature, and then spun at max speed in a benchtop microcentrifuge for three minutes to pellet cell debris. A PCR amplification using Taq DNA polymerase (Invitrogen, Carlsbad, CA) was set up according to the manufacturer's instructions with $5 \mu \mathrm{l}$ of the soluble cell lysate as template and using primers specific to the T7 promoter and the T7 terminator. The PCR product was analyzed by agarose gel electrophoresis. A plasmid with resulting PCR product of size $\sim 500 \mathrm{nt}$ was purified and submitted for DNA sequencing. Sequencing reactions were performed using primers specific to the T7 terminator and the BigDye Terminator v3.1 Cycle Sequencing Kit. DNA was sequenced by the Biotechnology Core DNA Sequencing Laboratory at the University of Illinois at Urbana-Champaign (Urbana, IL).

DNA sequencing of 26 fragments in $\mathrm{pET} 26 \mathrm{~b}(+)$ identified the $\sim 400 \mathrm{bp}$ fragments as belonging to the genes for H. perforatum CHS, H. perforatum BPS, and an additional, previously unknown gene, based on sequence homology (Table S3). The other two enzymes, PKS1 and PKS2, were not identified, probably due to lower relative expression (and thus abundance of mRNA) in the young plants. H. perforatum PKS1 and PKS2 were known to be expressed in mature plants, with expression particularly high in flower buds. ${ }^{2}$

Table S3 Sequence identity (\%) of $\sim 400 \mathrm{nt}$ fragments to known H. perforatum PKSs.

\#	BPS	CHS	PKS1	PKS2	\#	BPS	CHS	PKS1	PKS2
1	94	50	41	38	14	95	48	37	38
2	93	50	43	34	15	54	87	45	43
3	95	52	42	39	16	54	88	46	44
4	55	88	47	43	17	55	87	45	43
5*	55	54	35	30	18	58	80	46	46
6	53	84	44	41	19	70	48	34	43
7	55	81	46	45	20	53	84	45	42
8*	58	49	36	43	21	54	88	46	44
9	54	88	45	44	22	93	52	42	40
10	90	49	35	40	23	94	48	36	38
11	94	51	40	42	24	93	48	32	33
12**	-	-	-	-	25	93	49	38	40
13	90	47	32	37	26**	69	45	37	41

*Previously uncharacterized Type III PKS
**Low quality sequencing data.
The sequence identities of the four H. perforatum PKSs are: $\mathrm{BPS} / \mathrm{CHS}=61 \%, \mathrm{BPS} / \mathrm{PKS} 1=35 \%$, BPS $/$ PKS $2=47 \%$, CHS $/$ PKS $2=52 \%$, CHS $/$ PKS $1=40 \%$, PKS $1 /$ PKS $2=36 \%$.

Screening Eucalyptus Species

Because the polyketide compounds of interest were generally isolated from Eucalyptus leaves, ${ }^{3}$ leaf tissues from E. robusta and E. camaldulensis var. Silverton Province trees ($\sim 1.5 \mathrm{~m}$ height) were used for RNA isolation. Collection of plant tissue, RNA isolation, and cDNA synthesis were completed as described in the sections above. Degenerate primer nested PCR, cloning of $\sim 400 \mathrm{nt}$ fragments, and DNA sequencing were performed as described above for H. perforatum. A total of 27 individual clones were submitted for sequencing from E. robusta and 94 from E. camaldulensis. Clustal W and BLAST analysis using the Biology Workbench Suite ${ }^{1}$ were used to analyze the resulting DNA and translated protein sequences. Depending on the threshold (i.e. the number of different amino acids in the cloned DNA fragments), the number of different Type III PKS genes could range from 5 to 97 (Table S4). If the threshold in the validation experiment was used as a reference (i.e. genes with 80% sequence identity or 27 different amino acids out of ~ 136 are considered the same), the identified DNA fragments could be classified into 11 groups, representing 11 unique putative Type III PKSs genes. Phylogenetic analysis of all the Type III PKS fragments is given in Figure S6.

Table S4 The number of expected different Type III PKS genes.

Number of different amino acids (out of ~ 136)	Number of expected different genes
1	97
5	31
10	16
15	12
27	11
30	9
50	5

Figure S6 Phylogenetic analysis of all the cloned Type III PKS fragments. CHS, BPS, PKS1, and PKS2 were used as internal control. Fatty acid synthases (FAS) from three different species (Cornebacterium aurimucosum ATCC 700975, Bifidobacterium dentium Bd1, and Rhodococcus opacus B4) were used as out-group sequences.

RACE-PCR

The core fragment of EC2 was subjected to RACE using gene specific primers and the protocol of $3^{\prime} / 5^{\prime}$ RACE system for Rapid Amplification of cDNA Ends Kits Version 2.0 (Invitrogen, Carlsbad, CA). The PCR program consists of $94^{\circ} \mathrm{C}(2 \mathrm{~min}), 35$ cycles at $94^{\circ} \mathrm{C}(1 \mathrm{~min}), 55^{\circ} \mathrm{C}(30 \mathrm{~s})$ and $72{ }^{\circ} \mathrm{C}(2 \mathrm{~min})$, and a final 10 min extension at $72^{\circ} \mathrm{C}$. A plasmid with resulting PCR product of size $\sim 1000 \mathrm{nt}$ was purified and submitted for DNA sequencing. Sequencing reactions were performed using primers specific to the T7 terminator and the BigDye ${ }^{\circledR}$ Terminator v3.1 Cycle Sequencing Kit.

Table S5 Gene-specific primers for RACE PCR.

Primer	Sequence, $5^{\prime} \rightarrow 33^{\prime}$
EC2-F1	CGACACCGAGACCTACCTGGACAACC
EC2-F2	CGAGTGGGCCAGGCTCTGTTCG
EC2-F3	CGATTCGCTAGCGATGGCGCCTCCTCCACC
EC2-R1	TTCGCTAGCTGTCCAGGTAGGTCTCG
EC2-R2	ACAGAGCCTGGCCCAC
EC2-R3	GGTGGAGGAGGCGCCATC

1. Subramaniam, S. The Biology Workbench--a seamless database and analysis environment for the biologist. Proteins 32, 1-2 (1998).
2. Karppinen, K. \& Hohtola, A. Molecular cloning and tissue-specific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. J. Plant Physiol 165, 1079-1086 (2008).
3. Ghisalberti, E.L. Bioactive acylphloroglucinol derivatives from Eucalyptus species. Phytochemistry 41, 7-22 (1996).
