1	Supporting Information
2	
3	Moving Posttranslational Modifications Forward to Biosynthesize the Glycosylated Thiopeptide
4	Nocathiacin I in Nocardia sp. ATCC202099
5	
6	Ying Ding, Yi Yu, Haixue Pan, Heng Guo, Yeming Li, and Wen Liu*
7	
8	State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic
9	Chemistry, Chinese Academy of Sciences, 345 Lingling Rd., Shanghai 200032, China
10	
11	* To whom correspondence should be addressed: Shanghai Institute of Organic Chemistry, Chinese
12	Academy of Sciences, 345 Lingling Rd., Shanghai 200032, China. Wen Liu, Email:
13	wliu@mail.sioc.ac.cn, Tel: 86-21-54925111, Fax: 86-21-64166128
14	
15	Sequence Accession Number: GU564398
16	
17	
18	
19	
20	
21	

1 Materials and Procedures

2

3 Bacterial Strains, Plasmids, and Reagents

Bacterial strains and plasmids used in this study are summarized in Table S1. Chemicals, biochemicals
and media were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) and Oxoid
Ltd. (Basingstoke, United Kingdom) unless otherwise stated. Restriction enzymes were purchased
from TaKaRa Biotechnology (Dalian) Co., Ltd. (Dalian, China).

9 DNA Isolation and Manipulation

10 General DNA isolation and manipulation in Escherichia coli, Nocardia and streptomyces were performed according to standard methods.^{1,2} PCR amplifications were carried out on an authorized 11 12 thermal cycler Eppendorf AG 22331 (Hamburg, Germany) using either LA Taq DNA polymerase 13 (TaKaRa) or PrimeSTAR HS DNA polymerase (Dalian TaKaRa Biotechnology Co. Ltd., Dalian, 14 China). Primers (summarized in Table S2) synthesis and DNA sequencing were performed at 15 Shanghai Invitrogen Biotech Co., Ltd. (Shanghai, China) and Chinese National Human Genome Center (Shanghai, China). The genomic library of Nocardia sp. ATCC202099 was constructed in 16 pOJ446 according to the method described previously.³ This library was screened by colony 17 18 hybridization with the 0.3 kb, partial sugar N-dimethyltransferase-encoding PCR product, which was 19 amplified by using the degenerate primers (5'-GCT GAC GTC GCC TGC GGS ACS GGN DNN 20 CA-3' and 5'-CGC GAA CGT STC SGG RAA CCA CCA NGG NTC-3'), as a probe for identification 21 of the nocathiacin I (NOC-I) biosynthetic gene cluster. The resulting positive clones were further

- 1 confirmed by Southern hybridization.
- 2

3 **Sequence Analysis**

4 ORFs in the noc cluster were deduced from the sequenced DNA region with the assistance of 5 FramePlot 4.0beta program (<u>http://nocardia.nih.go.jp/fp4/</u>). The corresponding deduced proteins were 6 compared with other known proteins in the databases by using available BLAST methods 7 (http://www.ncbi.nlm.nih.gov/ blast/). Amino acid sequence alignments were performed with 8 CLUSTALW from BIOLOGYWORKBENCH 3.2 software (http://workbench.sdsc.edu). 9 10 Inactivation of nosD, nosE, and nosI in the Nosiheptide (NOS)-Producing Strain S. actuosus 11 ATCC25421 12 To inactivate nosD, a 1.9 kb fragment amplified by PCR using the primers D-inf-Ls/D-inf-La and a 13 2.0-kb fragment amplified by using the primers D-inf-Rs/D-inf-Ra were initially cloned into pMD19-T, 14 giving pSL4050 and pSL4051, respectively. After sequencing to confirm the fidelity, the 1.9 kb 15 HindIII/EcoRI and 2.0 kb EcoRI/XbaI fragments were recovered and co-ligated into the HindIII/XbaI 16 site of pKC1139, yielding the recombinant plasmid pSL4052, in which a 843 bp in-frame coding

region (corresponding to AA42-AA322 of the deduced product NosD) of nosD was deleted. The same 18 strategy was applied to inactivation of nosE and nosI, and the transient plasmids for each construction 19 were summarized in Table S1. For nosE inactivation, the recombinant plasmid pSL4055 contains a

- 20 mutant nosE, in which a 2,451 bp coding region (corresponding to AA₆₆-AA₈₈₂ of the deduced product
- 21 NosE) was deleted in-frame. For nosI inactivation, the recombinant plasmid pSL4058 contains a

1	mutant <i>nosI</i> , in which a 1,152 bp coding region (corresponding to AA_{19} - AA_{402} of the deduced product
2	NosL) was deleted in-frame.
3	Introductions of pSL4052, pSL4055 and pSL4058 into S. actuosus for inactivation of nosD, nosE and
4	nosI, respectively, were carried out by following the previously described procedure, ⁵ yielding the
5	corresponding mutant strains SL4050 (<i>anosD</i>), SL4052 (<i>anosE</i>), and SL4054 (<i>anosI</i>).
6	
7	In trans Expression of nocD, nocE, nocI or nocL from the noc Cluster in each corresponding S.
8	actuosus Mutant Strain for Heterologous Complementation to NOS Production
9	To make the nocD expression construct, a 1.1 kb nocD-containing PCR product that was amplified
10	from the cosmid pSL5001 by PCR using the primers D-hetero-F/D-hetero-R was cloned into pSP72,
11	yielding pSL4059. The 1.1 kb HindIII/XbaI fragment recovered from pSL4059 was co-ligated with a
12	0.45 kb EcoRI/HindIII fragment, harboring the promoter PermE*, into the EcoRI/XbaI site of
13	pSET152, yielding the recombinant plasmid pSL4060, in which the 1.1 kb fragment containing nocD
14	is under the control of the <i>PermE</i> * promoter. The same strategy was applied for expressing <i>nocE</i> , <i>nocI</i>
15	and nocL, and the transient plasmids for each construction were summarized in Table S1. For nocE
16	expression, the recombinant plasmid pSL4062 carries a 2.7 kb fragment that contains nocE under the
17	control of <i>PermE*</i> . For <i>nocI</i> expression, the recombinant plasmid pSL4064 carries a 1.4 kb fragment
18	that contains nocl under the control of PermE*. For nocL expression, the recombinant plasmid
19	pSL4066 carries a 1.4 kb fragment that contains <i>nocL</i> under the control of <i>PermE</i> *.
20	Introduction of pSL4060, pSL4062, pSL4064 or pSL4066 into each S. actuosus mutant strain, SL4050

21 (*AnosD*), SL4052 (*AnosE*), SL4054 (*AnosI*) or previously made SL4005 (*AnosL*) (5), for heterologous

1	complementation were carried out by following the described procedure, ⁵ yielding the corresponding
2	recombinant strains SL4051 (SL4050 derivative for expressing nocD), SL4053 (SL4052 derivative for
3	expressing nocE), SL4055 (SL4054 derivative for expressing nocI), and SL4056 (SL4005 derivative
4	for expressing <i>nocL</i>).
5	
6	Analysis of NOS Production in S. actuosus Strains
7	Fermentation and isolation of NOS from S. actuosus Strains were performed according to the methods
8	described previously. ⁵ HPLC and HPLC-MS analysis of NOS production were carried out on an
9	Agilent ZORBAX SB-C18 column (4.6×250 mm, part number 880975-902, S/N USCL024998) under
10	the same conditions, ⁵ with an only exception for ultraviolet detection at 330 nm to give a clearer
11	background.
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2010

1 Supplementary Tables

2

3 Table S1. Bacterial strains and plasmids used in this study

Strain/Plasmid	Characteristic(s)	Source/
		Reference
E. coli		
DH5a	Host for general cloning	Invitrogen
LE392	Host for genomic library construction	Promega
S17-1	Donor strain for conjugation between <i>E.coli</i> and	2
	Streptomyces	
Nocardia		
ATCC202099	Wild type strain, NOC-I producing	ATCC
Streptomyces		
S. actuosus ATCC	Wild type strain, NOS producing	ATCC
25421		
SL4050	AnosD mutant, NOS non-producing	This study
SL4051	SL4050 derivative that contains pSL4060 for expressing	This study
	nocD in trans, NOS producing	
SL4052	AnosE mutant, NOS non-producing	This study

SL4053	SL4052 derivative that contains pSL4062 for expressing	This study
	nocE in trans, NOS producing	
SL4054	AnosI mutant, NOS non-producing	This study
SL4055	SL4054 derivative that contains pSL4064 for expressing	This study
	nocl in trans, NOS producing	
SL4005	AnosL mutant, NOS non-producing	5
SL4056	SL4005 derivative that contains pSL4066 for expressing	This study
	nocL in trans, NOS producing	
Plasmids		
pMD19-T	E. coli subcloning vector	TaKaRa
pSP72	E. coli subcloning vector	Promega
pOJ446	<i>E.coli-Streptomyces</i> shuttle vector for genomic library	NRRL 14791
	construction	
pKC1139	E.coli-Streptomyces shuttle vector for gene inactivation,	1
	temperature sensitive replication in Streptomyces	
pSET152	<i>E.coli-Streptomyces</i> shuttle vector for heterologous	1
	complementation, site-specific integration in	
	Streptomyces	
pSL4001	pOJ446-based, S. actuosus ATCC 25421genomic library	5
	cosmid	

pSL5001	pOJ446-based, Nocardia sp.ATCC202099 genomic	This study
	library cosmid	
pSL4050	pMD19-T derivative containing a 1.9 kb PCR product	This study
	from pSL4001	
pSL4051	pMD19-T derivative containing a 2.0 kb PCR product	This study
	from pSL4001	
pSL4052	pKC1139 derivative containing a 3.9 kb fragment,	This study
	construct for <i>nosD</i> in-frame inactivation	
pSL4053	pMD19-T derivative containing a 1.9 kb PCR product	This study
	from pSL4001	
pSL4054	pMD19-T derivative containing a 1.9 kb PCR product	This study
	from pSL4001	
pSL4055	pKC1139 derivative containing a 3.8 kb fragment,	This study
	construct for <i>nosE</i> in-frame inactivation	
pSL4056	pMD19-T derivative containing a 1.9 kb PCR product	This study
	from pSL4001	
pSL4057	pMD19-T derivative containing a 1.9 kb PCR product	This study
	from pSL4001	
pSL4058	pKC1139 derivative containing a 3.8 kb fragment,	This study
	construct for <i>nosI</i> in-frame inactivation	

pSL4059	pSP72 derivative containing a 1.1 kb PCR product from	This study
	pSL5001	
pSL4060	pSET152 derivative containing a 1.1 kb fragment,	This study
	construct for expressing nocD in SL4050	
pSL4061	pSP72 derivative containing a 2.7 kb PCR product from	This study
	pSL5001	
pSL4062	pSET152 derivative containing a 2.7 kb fragment,	This study
	construct for expressing <i>nocE</i> in SL4052	
pSL4063	pSP72 derivative containing a 1.4 kb PCR product from	This study
	pSL5001	
pSL4064	pSET152 derivative containing a 1.4 kb fragment,	This study
	construct for expressing nocl in SL4054	
pSL4065	pSP72 derivative containing a 1.4 kb PCR product from	This study
	pSL5001	
pSL4066	pSET152 derivative containing a 1.4 kb fragment,	This study
	construct for expressing nocL in SL4005	

1 Table S2. Primers used in this study.

nosD	D-inf-Ls: 5'-GCGCAGAGAGGCTGGCCGC-3'
	D-inf-La: 5'-GGA <u>GAATTC</u> CAGCGCGCGGAGGCGTGC-3'
	D-inf-Rs: 5'-CCG <u>GAATTC</u> GGCCTGCTCGACCG-3'
	D-inf-Ra: 5'-AGC <u>TCTAGA</u> GGCAGGTCGAACAGCTCGC-3'
nosE	E-inf-Ls: 5'-CGCA <u>AAGCTT</u> CCCCGTAGGACATGCCG-3'
	E-inf-La: 5'-CGC <u>GAATTC</u> CAGGCGCCCGCGCAGC-3'
	E-inf-Rs: 5'-GTC <u>GAATTC</u> CAGGAGTGCCTGCCGC-3'
	E-inf-Ra: 5'-GGG <u>TCTAGA</u> AGGCGTTGCCGAGCTGG-3'
nosI	I-inf-Ls: 5'-TGCCAAGCTTGGTGTCGGTGTCGGTGAG-3'
	I-inf-La: 5'-CGG <u>GAATTC</u> TGCGCCTCCGAGCAGGAG-3'
	I-inf-Rs: 5'-GCG <u>GAATTC</u> GGTGAGCAGGTCGTCCCAG-3'
	I-inf-Ra: 5'-GGAGTCTAGATACCACCACGAGGGCGTC-3'
nosL	L-inf-Ls: 5'-C <u>AAGCTT</u> ACGCCCCGCAGGAAGAACC-3'
	L-inf-La: 5'-TCTAGAATTGCCTGGGAGTTCTGCG-3'
	L-inf-Rs: 5'-TCTAGACGTCGACCACTTCGTGAACC-3'
	L-inf-Ra: 5'- <u>GAATTC</u> GTGGTCGAGGGCGATGG-3'
nocD	D-hete-F: 5'-GT <u>AAGCTT</u> CCGGAGCTGAGGGCTACGCCTCCGG-3'
	D-hete-R: 5'-GG <u>TCTAGA</u> GGTCATGGCGTGCCGATCAGCTGCG-3'

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2010

nocE	E-hete-F: 5'-GT <u>AAGCTTGCAGGTGTGCGTGGGCGCCGTC-3'</u>
	E-hete-R: 5'-GG <u>TCTAGA</u> GGTCACCGGGCATCGCAACCTCCGGTA-3'
nocI	I-hete-F: 5'-GGAAGCTTGCTGTCCTACCTGACCCGCAAGG-3'
	I-hete-R: 5'-GGTCTAGAGGTCATGACAGCTTCCCGTTCGGGC-3'
nocL	L-hete-F: 5'-GG <u>AAGCTT</u> TGCAGGAACTTCCCCATGACACGGC-3'
	L-hete-R: 5'-GC <u>TCTAGA</u> CCTCAGCCGATCGGGATGACGGCC-3'

* Restriction sites for HindIII (AAGCTT), XbaI (TCTAGA) and EcoRI (GAATTC) are double-underlined

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2010

1 Supplementary Figures.

- 2
- 3 Fig. S1. Structures of thiopeptides whose biosynthetic gene clusters have been cloned.
- 4

- 11
- 12

1	Fig. S2. Structures and sequence comparison. A, glycosylated antibiotics erythromycin, C-1027,
2	aclarubicin, noglamycin, and methymycin which have the N-dimethylated deoxyaminosugar moiety. B,
3	amino acid sequence alignment of various N-dimethyltransferases, including EryCVI from
4	Saccharopolyspora erythraea NRRL 2338 (AAB84073), DesVI from S. venezuelae (3BXO_A),
5	SnogA from S. nogalater (AAF01819), AknX2 from S. galilaeus (AAF73460), SgcA5 from S.
6	globisporus (AAL06660), and NocS2 from Nocardia sp. ATCC202099 in this study. Protein
7	accession numbers are given in parentheses. The conserved amino acid motifs for PCR primer design
8	to clone the NOC-I biosynthetic gene cluster are boxed. ⁶⁻¹⁰

1	Fig S3. Features for the thiopeptide framework formation. A, peptide precursors for NOC-I (NocM),
2	NOS (NosM), thiostrepton (TsrH or TsrA), siomycin (SioH), thiocillin (TclB ₁₋₄ or TclE-H), GE2270A
3	(TpdA), and thiomuracin (TpdA'). B, organization of the thiopeptide framework-forming genes
4	identified from the producers of NOC-I (noc), NOS (nos), Thiostrepton (tsr), Siomycin (sio),
5	Thiocillin (tcl), GE2270A (tpd), and Thiomuracin (tpd'). Their deduced functions are labeled in
6	pattern, and homologies in sequence are indicated by dashed lines.

Α

	Leader Peptide	Structural Peptide
NocM NosM	MSADLSALNIDSLEISEFLDDSRLEDSEVVAKVMSA VDAAHLSDLDIDALEISEFLDESRLEDSEVVAKVMSA	SCTTCECSCSCSS SCTTCECCCSCSS
TclB ₁₋₄ /TclE-H	MSEIKKALNTLEIEDFDAIEMVDVDAMPENEALEIMGA	<u>SCTTCVCTCSCCTT</u>
TsrH/TsrA	MSNAALEIGVEGLTGLDVDTLEISDYMDETLLDGEDLTVTM	IASASCTTCICTCSCSS
SioH	MSTAAIVGQEIGVDGLTGLDVDALEISDYMDETLLDGEDLSVTM	VSSASCTTCICTCSCSS
TpdA	MSELESKLNLSDLPMDVFEMADSGMEVESLTAGHGMPEVGA	SCNCVCGFCCSCSPSA
TpdA'	MDLSDLPMDVFELADDGVAVESLTAGHGMTEVGA	SCNCECYICCSCSSA

В

	_		
8	polyazoles	Dehydrated amino acids	6-membered nitrogen heterocycle
0			

1 References

- 2
- 3 1. M. Bierman, R. Logan, K. O'Brien, E. T. Seno, R. N. Rao and B. E. Schoner, Gene, 1992,
- 4 **116**,43-49.
- 5 2. T. Kieser, M. J. Bibb, M. J. Buttner, K. F. Chater and D. A. Hopwood, Practical Streptomyces
- 6 *Genetics*, The John Innes Foundation, Norwich, UK, 2000.
- 7 3. W. Liu and B. Shen, Antimicrob. Agents Chemother., 2000, 44, 382–392.
- 8 4. J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor
- 9 Laboratory Press, New York, 3rd ed, 2001.
- 10 5. Y. Yu, L. Duan, Q. Zhang, R. Liao, Y. Ding, H. Pan, E. W. Pienkowski, G. Tang, B. Shen and W.
- 11 Liu. ACS. Chem. Biol., 2009, 4, 855-864
- 12 6. H. Chen, H. Yamase, K. Murakami, C. W. Chang, L. Zhao, Z. Zhao and H. W. Liu, Biochemistry,
- 13 2002, **41**, 9165–9183.
- 14 7. W. Liu, S. D. Christenson, S. Standage and B. Shen. *Science*, 2002, **297**, 1170-1173.
- 15 8. K. Raty, T. Kunnari , J. Hakala, P. Mantsala and K. Ylihonko. Mol. Gen. Genet., 2000, 264,
- 16 164-172.
- 17 9. R. G. Summers, S. Donadio, M. J. Staver, E. Wendt-Pienkowski, C. R. Hutchinson and L. Katz.
- 18 *Microbiology*, 1997, **143**, 3251-3262.
- 19 10. S. Torkkell, K. Ylihonko, J. Hakala, M. Skurnik and P. Mantsala. *Mol. Gen. Genet.*, 1997, 256,
 20 203-209.