Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2010 Stacking interaction in the middle and at the end of a DNA helix studied with non-natural nucleotides

Shu-ichi Nakano, Hirohito Oka, Yuuki Uotani, Kazuya Uenishi, Masayuki Fujii and Naoki Sugimoto

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Frontier Institute for Biomolecular Engineering Research (FIBER), and Department of Chemistry, Faculty of Science and Engineering, Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

Molecular Engineering Institute (MEI) and Department of Environmental and Biological Chemistry, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan

Supplementary information

Table S1 Thermodynamic parameters for DNA duplex formations measured in 1 MNaCl-phosphate buffer a

Sequence $(5' \rightarrow 3')$	$-\Delta H^{\circ}$	$-\Delta S^{\circ}$	$-\Delta G^{\circ}_{37}$	$T_{ m m}$
	(kcal mol^{-1})	$(\operatorname{cal} \operatorname{mol}^{-1} \mathrm{K}^{-1})$	(kcal mol^{-1})	(°C)
GTGTAA ^{phe} ATGTC				
/ GACATFTACAC	76.5±1.9	216±6	9.53±0.22	49.6
GTGTTA ^{phe} TTGTC				
/ GACAAFAACAC	79.0±1.5	225±5	9.10±0.14	47.4
GTGTGA ^{phe} GTGTC				
/ GACACFCACAC	74.4±1.9	205±6	10.9±0.3	56.6
amama , phramama b				
GIGICA ^{Phe} CIGIC [®]	72.4	202	10.4	54.0
/ GACAGFGACAC	/3.4	203	10.4	54.9
GTGTCA ^{naph} CTGTC ^b				
/ GACAGTGACAC	76.5	209	11.5	60.2
	97 1+1 8	276+5	11.6+0.2	54.1
	<i>J</i> 1.1±1.0	210-5	11.0-0.2	JT.1
GTGTTATTGTC				
/ GACAATAACAC	86.2±1.5	242±5	11.0±0.1	54.1

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2010 (Table S1 continued)

Sequence $(5' \rightarrow 3')$	$-\Delta H^{\circ}$	$-\Delta S^{\circ}$	$-\Delta G^{\circ}_{37}$	T _m
	(kcal mol^{-1})	$(cal mol^{-1}K^{-1})$	(kcal mol^{-1})	(°C)
GTGTGAGTGTC				
/ GACACTCACAC	92.6±2.3	256±7	13.2±0.3	61.0
GTGTCACTGTC ^b				
/ GACAGTGACAC	89.0	248	12.6	57.4
GTGTCACTGTC ^b				
/ GACAGFGACAC	69.5	199	7.4	42.9
GTGTAC ^{phe} ATGTC				
/ GACATFTACAC	76.0±1.4	215±4	9.25±0.14	48.5
GTGTTC ^{pne} TTGTC				
/ GACAAFAACAC	75.1±1.9	214±6	8.91±0.23	47.1
nha				
GTGTGC ^{pne} GTGTC				
/ GACACFCACAC	82.7±1.3	231±4	11.2 ± 0.1	55.6
am am a c ^{ube} am am a				
GTGTCC ^{pm} CTGTC				
/ GACAGFGACAC	67.5±5.9	185±18	10.2 ± 0.2	59.0
ananaananhanana				
GIGICC	75 1 4 0	207+15	11 4 0 2	(0.0
/ GACAGFGACAC	/5.1±4.8	207±15	11.4±0.2	60.8
	<u>80 4+1 7</u>	250+5	11 0±0 2	56 9
UACAIUIACAC	09.4±1.7	230±3	11.9±0.2	30.8
GTGTTCTTGTC				
	82 6+1 7	229+5	11 5+0 2	56.8
	02.0±1.7		11.5±0.2	50.0
GTGTGCGTGTC				
/ GACACGCACAC	89 6±1 8	243±5	14 3±0 2	66 3
	09.0-1.0	213-0	11.5-0.2	00.5
GTGTCCCTGTC				
/ GACAGGGACAC	85.7±3.5	235±10	12.9±0.3	65.3
GTGTCCCTGTC				
/ GACAGFGACAC	64.3±3.9	180±12	7.84±0.16	45.2

^{*a*}Data was obtained using the buffer containing 1 M NaCl, 10 mM Na₂HPO₄ (pH 7.0), and 1 mM Na₂EDTA. The error values were calculated from the difference between the parameters determined by the $T_{\rm m}^{-1}$ versus log ($C_{\rm t}/4$) plot and curve fitting to the two-state model. $T_{\rm m}$ was calculated at 100 μ M.

^bData are derived from the reference 19.

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2010

 Table S2
 Thermodynamic parameters of self-complementary DNA duplexes measured in 1

 MAN C1
 1
 1
 1
 1
 1

	A 7 70	4.00	1.00	7	
Sequence $(5' \rightarrow 3')$	$-\Delta H^{\circ}$	$-\Delta S^{\circ}$	$-\Delta G^{\circ}_{37}$	$I_{\rm m}$	
	(kcal mol ⁻)	(cal mol ⁻ K ⁻)	(kcal mol ⁻¹)	(°C)	
Core sequence 1					
ATGCGCAT ^b	62.0	171	9.3	54.3	
AATGCGCAT ^b	64.6	175	10.2	60.9	
A ^{phe} ATGCGCAT ^b	53.9	138	11.1	72.5	
A ^{naph} ATGCGCAT ^b	56.8	146	11.5	72.7	
<u>A</u> ATGCGCAT <u>T</u> ^b	75.8	208	11.2	61.2	
ATGCGCATA ^b	63.1	171	10.0	60.1	
ATGCGCAT <u>A^{phe b}</u>	56.2	148	10.1	64.1	
ATGCGCATA ^{naph b}	53.1	138	10.3	66.8	
<u>T</u> ATGCGCAT <u>A</u>	73.6±2.8	203±9	10.7 ± 0.2	59.8	
CATGCGCAT	65.9±3.2	183±10	9.48±0.15	55.1	
C ^{phe} ATGCGCAT	69.2 ± 1.7	170±5	11.3±0.1	65.5	
C ^{naph} ATGCGCAT	65.4 ± 2.0	174±6	11.3 ± 0.2	66.6	
<u>CATGCGCATG</u>	74.3±2.7	206±8	10.9±0.3	59.9	
ATGCGCATC	63.8±2.9	177±8	8.94±0.09	53.5	
ATGCGCATC ^{phe}	64.0±2.6	173±8	10.3±0.1	61.6	
ATGCGCATC ^{naph}	57.6±2.2	153±6	10.3 ± 0.2	63.9	
GATGCGCATC	73.0±4.8	203±15	10.3±0.2	57.3	
Core sequence 2					
TGCGCA ^b	47.4	129	7.6	50.3	
ATGCGCA ^b	55.0	151	8.2	51.4	
A ^{phe} TGCGCA	55.1±2.3	145±7	10.2 ± 0.2	64.1	
A ^{naph} TGCGCA	51.5±3.3	133±10	10.2 ± 0.2	67.1	
<u>A</u> TGCGCA <u>T</u> ^b	62.0	171	9.3	54.3	
TGCGCA <u>A</u>	48.2±4.0	132±12	7.39±0.25	47.6	
TGCGCA <u>A^{phe}</u>	48.6±3.4	131±11	7.96±0.16	53.0	
TGCGCAA ^{naph}	46.7±2.6	126±8	7.77±0.10	50.9	
<u>T</u> TGCGCA <u>A</u>	57.4±4.0	158±13	8.64±0.18	52.9	
<u>C</u> TGCGCA	57.1±3.4	159±10	7.66±0.13	48.1	
C ^{phe} TGCGCA	57.3±6.0	154±9	9.49±0.09	59.0	
<u>C^{naph}TGCGCA</u>	52.6±3.0	140±9	9.35±0.18	61.5	
<u>C</u> TGCGCA <u>G</u>	62.3±5.1	171±15	9.36±0.18	56.5	
TGCGCA <u>C</u>	37.8±2.8	98.6±9.0	6.92±0.19	49.5	
TGCGCA <u>C^{phe}</u>	55.7±2.0	151±6	8.49±0.16	53.1	
TGCGCA <u>C^{naph}</u>	54.4±2.9	148±9	8.78±0.15	54.1	
GTGCGCAC	58.7±1.9	156±6	9.94±0.05	62.3	

M NaCl-phosphate buffer^a

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2010 (Table S2 continued)

Sequence $(5' \rightarrow 3')$	$-\Delta H^{\circ}$	$-\Delta S^{\circ}$	$-\Delta G^{\circ}_{37}$	T _m
	(kcal mol^{-1})	$(cal mol^{-1}K^{-1})$	(kcal mol^{-1})	(°C)
Core sequence 3				
GTGCGCAC	58.7±1.9	156±6	9.94±0.05	62.3
<u>A</u> GTGCGCAC	70.2±1.7	189±3	11.5±0.2	65.1
<u>A^{phe}GTGCGCAC</u>	65.7±2.8	171 ± 8	12.7±0.2	74.0
<u>A^{naph}GTGCGCAC</u>	66.6±1.3	174±4	12.9±0.2	73.8
<u>A</u> GTGCGCAC <u>T</u>	75.7±1.6	204±4	12.5±0.1	67.3
GTGCGCAC <u>A</u>	71.9±1.7	194±5	11.9±0.1	66.3
GTGCGCAC <u>A^{phe}</u>	68.4±2.7	184 ± 8	11.5±0.2	65.6
GTGCGCAC <u>A^{naph}</u>	67.0±3.1	178±9	11.9±0.3	68.5
<u>T</u> GTGCGCAC <u>A</u>	72.2±2.5	193±7	12.5±0.1	69.1
<u>C</u> GTGCGCAC	69.2±1.7	188±5	10.9±0.1	62.1
C ^{phe} GTGCGCAC	73.5±1.6	196±4	12.9±0.1	70.5
<u>C^{naph}GTGCGCAC</u>	71.6±2.3	190±7	12.8±0.2	71.3
<u>C</u> GTGCGCAC <u>G</u>	79.8±2.1	214±6	13.5±0.2	70.7
GTGCGCAC <u>C</u>	67.5±1.8	182±5	10.9±0.1	63.2
GTGCGCAC <u>C^{phe}</u>	71.7±1.8	192±5	12.3±0.1	68.3
GTGCGCAC <u>C^{naph}</u>	67.6±2.2	179±6	12.1±0.2	69.5
<u>G</u> GTGCGCAC <u>C</u>	76.0±2.5	203±7	13.1±0.2	70.9
Core sequence A				
CTGCGCAG	62 3+5 1	171+15	9 36+0 18	56 5
	70 4+2 4	102+10	10.0+0.2	61.7
A ^{phe} CTCCCCAC	70.4 ± 3.4	192 ± 10	10.9±0.2	01.7
<u>Aⁿ</u> CIGCGCAG	$6/.9\pm2.9$	1/9±9	12.4 ± 0.2	/1.3
<u>A '</u> CIGCGCAG	/6.0±2./	203 ± 7	13.1 ± 0.1	/0.5
<u>ACTGCGCAG1</u>	82.2±2.0	225±6	12.3±0.2	64.0
CTGCGCAG <u>A</u>	65.9±1.9	180±6	10.3 ± 0.1	59.5
CTGCGCAG <u>Aphe</u>	60.7 ± 2.3	161±7	10.9 ± 0.2	65.4
CTGCGCAG <u>A^{napn}</u>	66.4±3.1	178±9	11.2 ± 0.2	64.8
<u>T</u> CTGCGCAG <u>A</u>	78.1±3.2	214±10	11.8±0.2	62.6
<u>C</u> CTGCGCAG	61.7±2.8	167±9	10.0±0.2	59.3
<u>C^{phe}CTGCGCAG</u>	76.6±2.2	207±6	12.5±0.2	66.6
<u>C^{naph}CTGCGCAG</u>	73.0±3.1	195±9	12.6±0.2	69.1
<u>C</u> CTGCGCAG <u>G</u>	78.3±2.0	212±6	12.7±0.2	67.5
CTGCGCAG <u>C</u>	nd.	nd.	nd.	nd.
CTGCGCAG <u>C^{phe}</u>	58.5±3.6	155±10	10.4±0.3	64.0
CTGCGCAG <u>C^{naph}</u>	54.7±4.1	144±12	10.2±0.3	65.2
<u>G</u> CTGCGCAG <u>C</u> ^c	nd.	nd.	nd.	nd.

^a Data was obtained using the buffer containing 1 M NaCl, 10 mM Na₂HPO₄ (pH 7.0), and 1 mM Na₂EDTA. $T_{\rm m}$ was calculated at 100 μ M. ^b Data are derived from the references 10 and 18.

1 1				
ΔH°	ΔS°	ΔG°_{37} ,	$T_{\rm m}$	
(kcal mol^{-1})	$(cal mol^{-1}K^{-1})$	(kcal mol^{-1})	(°C)	
-65.0	-176	-10.3	61.3	
-65.5	-178	-10.4	60.4	
-63.5	-165	-12.2	72.8	
-73.1±2.5	-194±7	-12.9±0.1	71.5	
-64.9	-168	-12.9	76.7	
-78.6±2.2	-206±6	-14.6±0.3	76.7	
-68.0±3.1	-188±9	-9.63 ± 0.07	56.3	
-72.2±3.5	-202 ± 10	-9.62 ± 0.05	54.9	
-70.7±3.9	-191±12	-11.5±0.2	64.7	
-64.8±2.9	-173±9	-11.1±0.2	65.6	
-66.3±2.6	-178±7	-11.3±0.3	65.2	
-62.2±1.7	-165±5	-11.3±0.3	67.0	
	$\frac{\Delta H^{\circ}}{(\text{kcal mol}^{-1})}$ -65.0 -65.5 -63.5 -73.1 \pm 2.5 -64.9 -78.6 \pm 2.2 -68.0 \pm 3.1 -72.2 \pm 3.5 -70.7 \pm 3.9 -64.8 \pm 2.9 -66.3 \pm 2.6 -62.2 \pm 1.7	$\begin{array}{c cccc} \Delta H^{\circ} & \Delta S^{\circ} \\ (\text{kcal mol}^{-1}) & (\text{cal mol}^{-1}\text{K}^{-1}) \\ \hline & -65.0 & -176 \\ & -65.5 & -178 \\ & -63.5 & -165 \\ & -73.1\pm2.5 & -194\pm7 \\ & -64.9 & -168 \\ & -78.6\pm2.2 & -206\pm6 \\ & -68.0\pm3.1 & -188\pm9 \\ & -72.2\pm3.5 & -202\pm10 \\ & -70.7\pm3.9 & -191\pm12 \\ & -64.8\pm2.9 & -173\pm9 \\ & -66.3\pm2.6 & -178\pm7 \\ & -62.2\pm1.7 & -165\pm5 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table S3 Thermodynamic parameters of DNA duplexes forming 2 or 3 nucleotide danglingends measured in 1 M NaCl-phosphate buffer^a

^{*a*} Melting curve was obtained with the buffer containing 1 M NaCl, 10 mM Na₂HPO₄ (pH 7.0), and 1 mM Na₂EDTA. $T_{\rm m}$ was calculated at 100 μ M.

^b Data are derived from the references 10 and 18.

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2010

Fig. S1 Melting curve of the DNA duplexes forming a dangling end of C (red), C^{phe} (violet), or C^{naph} (blue) at the 5' end (A) or the 3' end (B) of the core sequence of ATGCGCAT, monitored at 260 nm. The curves were obtained with 10 μ M DNA in 1 M NaCl–phosphate buffer. The fits to a two–state model are indicated in a black line.